Math, asked by ahemant885, 10 months ago

Form the quadratic polynomials whose zeroes are : a)3+√2. b)-√2 and √2. c)1÷3 and 1÷4. d)-5 and -3 e) 3 and 1÷5. f)1÷a. , 1÷b. pls dont give old answers and answer fast pls​

Answers

Answered by ashvithreddy6
0

Actually where are the quadratic polynomials.

Give correct question bro

Follow me

Answered by AlluringNightingale
1

Answer:

a). x² - (3 + √2)x + 3√2

b). x² - 2

c). (1/12)•(12x² - 7x + 1) OR (12x² - 7x + 1)

d). x² + 8x + 15

e). (1/5)•(5x² - 16x + 3) OR (5x² - 16x + 3)

f). (1/ab)•[abx² - (a + b)x + 1]

OR abx² - (a + b)x + 1

Note:

★ The possible values of the variable for which the polynomial becomes zero are called its zeros.

★ A quadratic polynomial can have atmost two zeros .

★ If α and ß are the zeros of the quadratic polynomial ax² + bx + c , then ;

• Sum of zeros , (α + ß) = -b/a

• Product of zeros , (αß) = c/a

★ If α and ß are the zeros of any quadratic polynomial , then it is given by ;

x² - (α + ß)x + αß

★ If α and ß are the zeros of the quadratic polynomial ax² + bx + c , then they (α and ß) are also the zeros of the quadratic polynomial k(ax² + bx + c) , k≠0.

Solution:

We need to form quadratic polynomial using the given zeros .

Also,

Let α and ß be the zeros in every case .

Thus, Here we go ↓

(a) 3 and √2

α = 3

ß = √2

Sum of zeros , (α + ß) = 3 + √2

Product of zeros , αß = 3√2

Thus,

The required quadratic polynomial will be given as ; x² - (α + ß)x + αß

ie ; x² - (3 + √2)x + 3√2

°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°

(b) -√2 and √2

α = -√2

ß = √2

Sum of zeros , (α + ß) = -√2 + √2 = 0

Product of zeros , αß = -√2•√2 = -2

Thus,

The required quadratic polynomial will be given as ; x² - (α + ß)x + αß

ie ; x² - 0•x + (-2)

ie; x² - 2

°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°

(c) 1/3 and 1/4

α = 1/3

ß = 1/4

Sum of zeros , (α + ß) = 1/3 + 1/4

= (4 + 3)/12

= 7/12

Product of zeros , αß = (1/3)•(1/4) = 1/12

Thus,

The required quadratic polynomial will be given as ; x² - (α + ß)x + αß

ie ; x² - (7/12)x + 1/12

ie ; x² - 7x/12 + 1/12

ie; (1/12)•(12x² - 7x + 1)

Another quadratic polynomial may be ;

12x² - 7x + 1

°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°

(d) -5 and -3

α = -5

ß = -3

Sum of zeros , (α + ß) = -3-5 = -8

Product of zeros , αß = (-3)•(-5) = 15

Thus,

The required quadratic polynomial will be given as ; x² - (α + ß)x + αß

ie ; x² - (-8)x + 15

ie; x² + 8x + 15

°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°

(e) 3 and 1/5

α = 3

ß = 1/5

Sum of zeros , (α + ß) = 3 + 1/5

= (15 + 1)/5

= 16/5

Product of zeros , αß = 3•(1/5) = 3/5

Thus,

The required quadratic polynomial will be given as ; x² - (α + ß)x + αß

ie ; x² - (16/5)x + 3/5

ie ; x² - 16x/5 + 3/5

ie ; (1/5)•(5x² - 16x + 3)

Another quadratic polynomial may be ;

x² - 16x + 3

°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°

(f) 1/a + 1/b

α = 1/a

ß = 1/b

Sum of zeros , (α + ß) = 1/a + 1/b

= (b + a)/ab

= (a + b)/ab

Product of zeros , αß = (1/a)•(1/b) = 1/ab

Thus,

The required quadratic polynomial will be given as ; x² - (α + ß)x + αß

ie ; x² - [ (a + b)/ab ]x + 1/ab

ie ; x² - (a + b)x/ab + 1/ab

ie ; (1/ab)•[abx² - (a + b)x + 1]

Another quadratic polynomial may be ;

abx² - (a + b)x + 1

°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°

Similar questions