Math, asked by kashyapjayan6430, 10 months ago

Form the Quadratic polynomials whose zeros are:3 and 1/5

Answers

Answered by kathir2401
8

Answer:

15x^2-x+5

Step-by-step explanation:

x^2(a+b)-(ab)+1=0

3x^2-1/5x+1=0

(15x^2-x+5)/5=0

15x^2-x+5=0

Answered by Rohith200422
22

Question:

Form the Quadratic polynomials whose zeros are:

3 \: and \:  \frac{1}{5}

Answer:

The \: equation \: is,

  \underline{ \:  \sf \red{ \bold{5 {x}^{2}  - 16x + 3 = 0}} \: }

Given:

\bigstar Zeroes \: of \: polynomial \: are: \: 3 \: and \:  \frac{1}{5}

Step-by-step explanation:

The equation is,

 \boxed{ {x}^{2} - ( \alpha  +  \beta )x +  \alpha  \beta  = 0}

Here, \:  \alpha  = 3, \:  \beta  =  \frac{1}{5}

 \implies {x}^{2} - ( 3+ \frac{1}{5} )x +   (3 \times  \frac{1}{5} )  = 0

 \implies {x}^{2} - ( \frac{16}{5} )x +    (\frac{3}{5})   = 0

Now multiplying by 5 on both sides,

 \implies \underline{ \: \boxed{5 {x}^{2}  - 16x + 3 = 0} \: }

\therefore The \: required \: equation \: is,

  \underline{ \:  \sf \pink{5 {x}^{2}  - 16x + 3 = 0} \: }

More information:

\bigstar Sum\: of\:roots\:(\alpha+\beta)=\frac{-b}{a}

\bigstar Product\: of\: roots\: (\alpha\beta)=\frac{c}{a}

Similar questions