Formula for (1-cos x)?
Answers
Answer:
There isn’t one formula, there are several.
1−cos(x)=[1−cos(x)].1+cos(x)1+cos(x)1−cos(x)=[1−cos(x)].1+cos(x)1+cos(x)
=1−cos2(x)1+cos(x)=sin2(x)1+cos(x)=1−cos2(x)1+cos(x)=sin2(x)1+cos(x)
Ok, perhaps this isn’t that useful, but from the half-angle formula for the cosinecosine function, we can rewrite this as:
sin2(x)2cos2(0.5x)sin2(x)2cos2(0.5x)
While we are about it, let’s use the half-angle formula for the sinesine function:
4sin2(0.5x)cos2(0.5x)2cos2(0.5x)=2sin2(0.5x)4sin2(0.5x)cos2(0.5x)2cos2(0.5x)=2sin2(0.5x)
We could express cos(x)cos(x) in terms of t=tan(0.5x)t=tan(0.5x)
1−cos(x)=1−1−t21+t2=2t21+t21−cos(x)=1−1−t21+t2=2t21+t2
=tan(0.5x)sin(x)=2sin2(0.5x)=tan(0.5x)sin(x)=2sin2(0.5x)
How about something different?
cos(x)=∑∞n=0(−1)nx2n(2n)!cos(x)=∑n=0∞(−1)nx2n(2n)!
Thus
1−cos(x)=−∑∞n=1(−1)nx2n(2n)!1−cos(x)=−∑n=1∞(−1)nx2n(2n)!
=x22!−x44!+x66!...
Answer:
Depend on question. 1- 1/sin x