Formula for algebra
Formula of algebra
Answers
Answer:
Important Formulas in Algebra
Here is a list of Algebraic formulas –
a2 – b2 = (a – b)(a + b)
(a+b)2 = a2 + 2ab + b2
a2 + b2 = (a – b)2 + 2ab
(a – b)2 = a2 – 2ab + b2
(a + b + c)2 = a2 + b2 + c2 + 2ab + 2ac + 2bc
(a – b – c)2 = a2 + b2 + c2 – 2ab – 2ac + 2bc
(a + b)3 = a3 + 3a2b + 3ab2 + b3 ; (a + b)3 = a3 + b3 + 3ab(a + b)
(a – b)3 = a3 – 3a2b + 3ab2 – b3
a3 – b3 = (a – b)(a2 + ab + b2)
a3 + b3 = (a + b)(a2 – ab + b2)
(a + b)3 = a3 + 3a2b + 3ab2 + b3
(a – b)3 = a3 – 3a2b + 3ab2 – b3
(a + b)4 = a4 + 4a3b + 6a2b2 + 4ab3 + b4)
(a – b)4 = a4 – 4a3b + 6a2b2 – 4ab3 + b4)
a4 – b4 = (a – b)(a + b)(a2 + b2)
a5 – b5 = (a – b)(a4 + a3b + a2b2 + ab3 + b4)
If n is a natural number an – bn = (a – b)(an-1 + an-2b+…+ bn-2a + bn-1)
If n is even (n = 2k), an + bn = (a + b)(an-1 – an-2b +…+ bn-2a – bn-1)
If n is odd (n = 2k + 1), an + bn = (a + b)(an-1 – an-2b +…- bn-2a + bn-1)
(a + b + c + …)2 = a2 + b2 + c2 + … + 2(ab + ac + bc + ….)
Laws of Exponents (am)(an) = am+n (ab)m = ambm (am)n = amn
Step-by-step explanation:
(a + b) 2 = a 2 + b 2 + 2ab
(a − b) 2 = a 2 + b 2 − 2ab
a 2 − b 2 = (a − b) (a + b)
(x + a) (x + b) = x 2 + (a + b) x + ab
(a + b + c) 2 = a 2 + b 2 + c 2 + 2ab + 2bc + 2ca
(a + (−b) + (−c)) 2 = a 2 + (−b) 2 + (−c) 2 + 2a (−b) + 2 (−b) (−c) + 2a (−c)
(a – b – c) 2 = a 2 + b 2 + c 2 − 2ab + 2bc − 2ca
(a + b) 3 = a 3 + b 3 + 3ab(a + b)
(a − b) 3 = a 3 - b 3 - 3ab(a - b)
a 3 − b 3 = (a − b) (a 2 + b 2 + ab)
a 3 + b 3 = (a + b) (a 2 + b 2 − ab)
(a + b + c) 3 = a 3 + b 3 + c 3 + 3(a + b)(b + c)(c + a)
a 3 + b 3 + c 3 − 3abc = (a + b + c) (a 2 + b 2 + c 2 − ab − bc − ac)
If (a + b + c) = 0,
a 3 + b 3 + c 3 = 3abc