formula for calculating for wavelenght in light in interferometr??............plz ans
Answers
Answered by
1
Answer:
Apparatus:
Laser light source, Michelson interferometer kit, optical bench, meter scale.
Theory:
Interferometers are used to precisely measure the wavelength of optical beams through the creation of interference patterns . The Michelson interferometer is a historically important device which provides simple interferometric configuration, useful for introducing basic principles.
Interference theory:
Light is a transverse wave. When two waves of same wavelength and amplitude travel through same medium, their amplitudes combine. A wave of greater or lesser amplitude than the original will be the result. The addition of amplitudes due to superposition of two waves is called interference. If the crest of one wave meets with the trough of the other, the resultant intensity will be zero and the waves are said to interfere destructively. Alternatively, if the crest of one wave meets with the crest of the other, the resultant will be maximum intensity and the waves are said to interfere constructively.
Suppose two coherent (i.e. their initial phase relationship remains constant) waves start from the same point and travel different paths before coming back together and interfering with each other. Suppose also that the re-combined waves illuminate a screen where the position on the screen depends on the difference in the lengths of the paths traveled by the two waves. Then the resulting alternating bright and dark bands on the screen are called interference fringes.
In constructive interference, a bright fringe (band) is obtained on the screen. For constructive interference to occur, the path difference between two beams must be an integral multiple mλ of the wavelength λ, where m is the order, with m =0,1,2...
Please mark me Brainliest.
Apparatus:
Laser light source, Michelson interferometer kit, optical bench, meter scale.
Theory:
Interferometers are used to precisely measure the wavelength of optical beams through the creation of interference patterns . The Michelson interferometer is a historically important device which provides simple interferometric configuration, useful for introducing basic principles.
Interference theory:
Light is a transverse wave. When two waves of same wavelength and amplitude travel through same medium, their amplitudes combine. A wave of greater or lesser amplitude than the original will be the result. The addition of amplitudes due to superposition of two waves is called interference. If the crest of one wave meets with the trough of the other, the resultant intensity will be zero and the waves are said to interfere destructively. Alternatively, if the crest of one wave meets with the crest of the other, the resultant will be maximum intensity and the waves are said to interfere constructively.
Suppose two coherent (i.e. their initial phase relationship remains constant) waves start from the same point and travel different paths before coming back together and interfering with each other. Suppose also that the re-combined waves illuminate a screen where the position on the screen depends on the difference in the lengths of the paths traveled by the two waves. Then the resulting alternating bright and dark bands on the screen are called interference fringes.
In constructive interference, a bright fringe (band) is obtained on the screen. For constructive interference to occur, the path difference between two beams must be an integral multiple mλ of the wavelength λ, where m is the order, with m =0,1,2...
Please mark me Brainliest.
Similar questions