Math, asked by sprachurja, 5 hours ago

formula for finding multipliar​

Answers

Answered by Anonymous
35

Given Limit:-

\\\bullet\quad\displaystyle \sf  \lim_{x \to 2} \dfrac{x^{2} -4}{\sqrt{x+2} -\sqrt{3x-2} } \\

Solution:-

By Rationalizing the denominator,

\\\quad\longrightarrow\quad\displaystyle \sf  \lim_{x \to 2} \dfrac{x^{2} -4}{\sqrt{x+2} -\sqrt{3x-2} } \times \dfrac{\sqrt{x+2} +\sqrt{3x-2}}{\sqrt{x+2} +\sqrt{3x-2}} \\

\\\quad\longrightarrow\quad\displaystyle \sf  \lim_{x \to 2} \dfrac{(x+2)(x-2)[\sqrt{x+2}+\sqrt{3x-2} \:] }{(\sqrt{x+2})^{2}  -(\sqrt{3x-2})^{2}  } \\

\\\quad\longrightarrow\quad\displaystyle \sf  \lim_{x \to 2} \dfrac{(x+2)(x-2)[\sqrt{x+2}+\sqrt{3x-2} \:] }{ x+2-3x+2 } \\

\\\quad\longrightarrow\quad\displaystyle \sf  \lim_{x \to 2} \dfrac{(x+2)(x-2)[\sqrt{x+2}+\sqrt{3x-2} \:] }{ 4-2x } \\

\\\quad\longrightarrow\quad\displaystyle \sf  \lim_{x \to 2} \dfrac{(x+2)(x-2)[\sqrt{x+2}+\sqrt{3x-2} \:] }{ -2(x-2) } \\

\\\quad\longrightarrow\quad\displaystyle \sf  \lim_{x \to 2} \dfrac{(x+2)[\sqrt{x+2}+\sqrt{3x-2} \:] }{ -2 } \\

\\\quad\longrightarrow\quad\sf \dfrac{(2+2)[\sqrt{2+2\:}+\sqrt{3(2)-2\:}  }{-2} \\

\\\quad\longrightarrow\quad\sf \dfrac{4\times4}{-2} \\

\\\quad\therefore\quad \boxed{\frak{-8} }\bigstar\\

______________________________

Similar questions