Math, asked by kunaljaiswal2012, 1 month ago

formula method
6 {y }^{2}  + 7y - 10 = 0

Answers

Answered by BrainlyArnab
1

"

 \sf \: roots \: are \:  \frac{5}{6}  \: and \:  - 2 \\   \\ \sf \: see \: the \: attachment \: for \: step \: by \: step \: explantion \\ \sf hope \: it \: helps

Attachments:
Answered by GeniusAnswer
30

 \large\bf\underline\red{Answer  \: :-}

Given Quadratic equation :

 \bigstar \:  \: \bf\purple{6y {}^{2}  + 7y - 10 = 0}

First know about general formula of a quadratic equation,

General formula : ax² + bx + c = 0

We multiple a and like we get, ac ( easy to solve ) And we factorize.

How to factorize equation

When we ac see the equation and think about it we have those 2 factor we multiply them we get ac, and we add them we get b.

According to the all concept,

Multiple a and c

\dashrightarrow\sf{6\:  \times  \:( - 10)  } \\ \dashrightarrow\sf{ - 60  } \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:   \:

Factorization :

factors of -60

12 and -5

Verify :

Multiple of factor = ac

12 × -5 = -60

Addition if the factors = b

12 + (-5) = 7

Now,

\implies\sf{y {}^{2}  + 7y - 60 = 0  } \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \\  \\ \implies\sf{y {}^{2} + 12y - 5y - 60 = 0 }  \:  \:  \:  \:  \:  \: \\  \\ \implies\sf{y(y + 12) - 5(y + 12) = 0} \\  \\ \implies\sf{(y + 12)(y - 5) = 0} \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \\  \\ \implies\sf{y + 12 = 0 \:  \: or \:  \: y - 5 = 0} \:  \:  \\  \\ \implies\bf \red{y =  - 12 \:  \:  \: or \:  \:  \: y = 5} \:  \:  \:  \:  \:  \:  \:  \:

Roots :

y = -12

y = 5

_______________________________

Similar questions