Math, asked by mohanth, 5 months ago

Formula of (a+b)3 and (a-b)3?​

Answers

Answered by Anonymous
18

Step-by-step explanation:

 \blue{ \bold{ \underline{ QUESTION :  - }}}

Formula of (a+b)³ and (a-b)³ ?

_________________________

 \star{ \pink{ \underline{ \underline{ \bold{ReQuRiEd  \:  \: AnSWeR :  - }}}}}

  • (a+b)³ = a³+b³ +3ab(a+b)

Or. (a+b)³ = a³ +b³ +3a²b+3ab²

  • (a-b)³ = a³-b³-3ab(a-b)

Or. (a-b)³ = a³ -b³-3a²b+ 3ab²

_________________________

  \boxed{ \huge{\bold{ \red{ \underbrace{ Verification}}}}}

LET,

  • a = 2

  • b = 4

(a-b)³ =a³ -b³-3a²b+ 3ab²

=> (2-4)³ = 2³-4³-3×2²×4+ 3× 2× 4²

=>(- 2)³ = 8 - 48 + 96 -64

=> -8 = -8

  \boxed{ \green{ \mathfrak{L.H.S = R.H.S}}}

Agian,

  • a = 2

  • b = 4

(a+b)³ = a³ +b³ +3a²b+3ab²

=> (2+4)³ = 2³+4³+3×2²×4 + 3×2× 4²

=> (6)³ = 8 +48 + 96 +64

=> 216 = 216

  \boxed{ \green{ \mathfrak{L.H.S = R.H.S}}}

We see Both cases Are L.H.S = R.H.S so The Both

Formula Are Proved

_________________________

MORE YOU KNOW ➡️

  • a²– b² = (a – b) (a + b)

  • (a + b)² = a² + 2ab + b²

  • a² + b² = (a + b)² – 2ab

  • (a – b)² = a² – 2ab + b²

  • (a + b + c)² = a² + b²+ c² + 2ab + 2bc + 2ca

  • (a – b – c)² = a² + b² + c²– 2ab + 2bc – 2ca

  • a³ – b³ = (a – b) (a²+ ab + b²)

  • a³+ b³ = (a + b) (a²– ab + b²)

  • (a + b)⁴ = a⁴ + 4a³b + 6a²b² + 4ab³ + b⁴

  • (a – b)⁴= a⁴– 4a³b + 6a²b² – 4ab³ + b⁴

  • a⁴– b⁴ = (a – b) (a + b) (a² + b²)

  • a⁵ – b⁵ = (a – b) (a⁴ + a³b + a2b² + ab³ + b⁴)

_________________________


Anonymous: Nice ;) [*Verification]
Anonymous: Thx☃️ mistake in Spelling
Sitααrα: Purr-fectt!
Sitααrα: Listen!! Ask one of the moderators for givin' edit, one
Sitααrα: *once they give you edit, correct the spellings, (Verification) and (Again)
Anonymous: ok
Anonymous: thx you modetor
Sitααrα: uh forgot to correct the spelling of (Again)
Anonymous: kot kora nai korelu sun
Sitααrα: uh had written (agian) instead of (again)
Answered by vinshultyagi
4

\Huge{\color{magenta}{Solution:-}}

(a+b)³ = a³+b³ +3ab(a+b)

(a-b)³ = a³-b³-3ab(a-b)

_________________________

\Huge{\color{magenta}{Verification:-}}

LET,

a = 2

b = 4

(a-b)³ =a³ -b³-3a²b+ 3ab²

\longrightarrow (2-4)³ = 2³-4³-3×2²×4+ 3× 2× 4²

\longrightarrow(- 2)³ = 8 - 48 + 96 -64

\longrightarrow -8 = -8

\boxed{ \red{ \mathtt{L.H.S = R.H.S}}}

Again Let,

a = 2

b = 4

(a+b)³ = a³ +b³ +3a²b+3ab²

\longrightarrow (2+4)³ = 2³+4³+3×2²×4 + 3×2× 4²

\longrightarrow (6)³ = 8 +48 + 96 +64

\longrightarrow216 = 216

\boxed{ \blue{ \mathtt{L.H.S = R.H.S}}}


vinshultyagi: hope it helps:)
Anonymous: Awssm! :)
Similar questions