Math, asked by rahulkumarsingh9855, 1 day ago

formula of aafftr class 11​

Answers

Answered by acpadvance96
0

Answer:

Algebra Formulas For Class 11

Distributive Property a×(b+c)=a×b+a×c

Commutative Property of Addition a+b=b+a

Commutative Property of Multiplication a×b=b×a

Step-by-step explanation:

Algebra Formula-

List of Maths Formulas for 11th Class

Here is a list of Maths formulas for CBSE class 11.

Coordinate Geometry & Line Formula

Coordinate Geometry & Lines Formulas for Class 11

Distance Formula

|

P

1

P

2

|

=

(

x

2

x

1

)

2

+

(

y

2

y

1

)

2

Slope

m

=

r

i

s

e

r

u

n

=

Δ

y

Δ

x

=

y

2

y

1

x

2

x

1

Point-Slope Form

y

y

1

=

m

(

x

x

1

)

Point-Point Form

y

y

1

=

y

2

y

1

x

2

x

1

(

x

x

1

)

Slope-Intercept Form

y

=

m

x

+

b

Intercept-Intercept Form

x

a

+

y

b

=

1

General Form

A

x

+

B

y

+

C

=

0

Parallel & Perpendicular Lines Parallel Lines

m

1

=

m

2

Perpendicular Lines

m

1

m

2

=

1

Distance from a Point to a Line

d

=

|

A

x

0

+

B

y

0

+

C

|

A

2

+

B

2

Algebra Formula-

Algebra Formulas For Class 11

Distributive Property

a

×

(

b

+

c

)

=

a

×

b

+

a

×

c

Commutative Property of Addition

a

+

b

=

b

+

a

Commutative Property of Multiplication

a

×

b

=

b

×

a

Associative Property of Addition

a

+

(

b

+

c

)

=

(

a

+

b

)

+

c

Associative Property of Multiplication

a

×

(

b

×

c

)

=

(

a

×

b

)

×

c

Additive Identity Property

a

+

0

=

a

Multiplicative Identity Property

a

×

1

=

a

Additive Inverse Property

a

+

(

a

)

=

0

Multiplicative Inverse Property

a

(

1

a

)

=

1

Zero Property of Multiplication

a

×

(

0

)

=

0

Trigonometric Formula-

Trigonometry Class 11 Formulas

sin

(

θ

)

=

sin

θ

cos

(

θ

)

=

cos

θ

tan

(

θ

)

=

tan

θ

c

o

s

e

c

(

θ

)

=

c

o

s

e

c

θ

sec

(

θ

)

=

sec

θ

cot

(

θ

)

=

cot

θ

Product to Sum Formulas

sin

x

s

i

n

y

=

1

2

[

cos

(

x

y

)

cos

(

x

+

y

)

]

cos

x

cos

y

=

1

2

[

cos

(

x

y

)

+

cos

(

x

+

y

)

]

sin

x

cos

y

=

1

2

[

sin

(

x

+

y

)

+

sin

(

x

y

)

]

cos

x

sin

y

=

1

2

[

sin

(

x

+

y

)

sin

(

x

y

)

]

Sum to Product Formulas

sin

x

+

sin

y

=

2

sin

(

x

+

y

2

)

cos

(

x

y

2

)

sin

x

sin

y

=

2

cos

(

x

+

y

2

)

sin

(

x

y

2

)

cos

x

+

cos

y

=

2

cos

(

x

+

y

2

)

cos

(

x

y

2

)

cos

x

cos

y

=

2

sin

(

x

+

y

2

)

sin

(

x

y

2

)

Similar questions