Math, asked by Beherabiswajit531, 1 year ago

formula of sin(a+b).sin(a-b)

Answers

Answered by Anonymous
0

It will be

(sina+sinb)×(sina-sinb)

By using identity

 {sina}^{2}  -  {sinb}^{2}

hope it is helpful to you.

Answered by avanchasrinivas
0

Answer:

sin^2{a} - sin^2{b}

Step by step explanation:

[since, sin (a+b) = sin a . cos b + cos a . sin b ,

           sin (a-b) = sin a . cos b - cos a . sin b .]

sin (a+b) . sin (a-b) = sin a . cos b + cos a . sin b . sin a . cos b - cos a . sin b

Above equation is in the form of 'a^2 - b^2'

a^2 - b^2 = (a+b) . (a-b)

= (sin a .  cos b)^2 - (cos a .   sin b)^2

= sin^2{a} . cos^2{b} - cos^2{a} . sin^2{b}

= sin^2{a} (1 - sin^2{b}) - (1 - sin^2{a}) sin^2{b}

= sin^2{a} - sin^2{a} . sin^2{b} - (sin^2{b} - sin^2{a} . sin^2{b})

= sin^2{a} - sin^{a} . sin^2{b} - sin^2{b} + sin^2{a} . sin^2{b}

[- sin^2{a} . sin^2{b} , + sin^2{a} . sin^2{b} will be cancelled]

= sin^2{a} - sin^2{b}

           This is the answer........

             Hope this helps you mate .................

           If you like the answer please mark the brainliest...........

Similar questions