Math, asked by hassan110, 11 months ago

Formula of surface area and volume​

Answers

Answered by Anonymous
16

AnswEr :

\huge{\underline{\boxed{\frak \orange{Formulae \: of \: Cube :-}}}}

Reference of image is shown in Diagram

\setlength{\unitlength}{0.74 cm}\begin{picture}(12,4)\thicklines\put(11.1,7.5){$a$}\put(6,6){\line(1,0){5}}\put(6,9){\line(1,0){5}}\put(11,9){\line(0,-1){3}}\put(6,6){\line(0,1){3}}\put(4,7.3){\line(1,0){5}}\put(4,10.3){\line(1,0){5}}\put(9,10.3){\line(0,-1){3}}\put(4,7.3){\line(0,1){3}}\put(6,6){\line(-3,2){2}}\put(6,9){\line(-3,2){2}}\put(11,9){\line(-3,2){2}}\put(11,6){\line(-3,2){2}}\end{picture}

\scriptsize\sf{\quad\dag\ Here, \: a \: is \: side}

\normalsize\dashrightarrow\sf\ Lateral \: surface \: area \: of \: cube = 4a^{2}

\normalsize\dashrightarrow\sf\ Total \: surface \: area \: of \: cube = 6a^{2}

\normalsize\dashrightarrow\sf\ Volume \: of \: cube = a^{3}

\normalsize\dashrightarrow\sf\ Diagnol \: of \: cube = \sqrt{3a}

\huge{\underline{\boxed{\frak \red{Formulae \: of \: Cuboid :-}}}}

Reference of image is shown in diagram

\setlength{\unitlength}{0.74 cm}\begin{picture}(12,4)\thicklines\put(6,6){\line(1,0){5}}\put(6,9){\line(1,0){5}}\put(11,9){\line(0,-1){3}}\put(6,6){\line(0,1){3}}\put(4,7.3){\line(1,0){5}}\put(4,10.3){\line(1,0){5}}\put(9,10.3){\line(0,-1){3}}\put(4,7.3){\line(0,1){3}}\put(6,6){\line(-3,2){2}}\put(6,9){\line(-3,2){2}}\put(11,9){\line(-3,2){2}}\put(11,6){\line(-3,2){2}}\put(8,5.5){L}\put(4,6.3){B}\put(11.2,7.5){H}\end{picture}

\scriptsize\sf{\quad\dag\ L = Length}

\scriptsize\sf{\quad\dag\ B = Breadth}

\scriptsize\sf{\quad\dag\ H = Height}

\normalsize\dashrightarrow\sf\ Lateral \: surface \: area \: of \: cuboid = 2(L + B)H

\normalsize\dashrightarrow\sf\ Total  \: surface \: area \: of \: cuboid  = 2(LB + BH + HL)

\normalsize\dashrightarrow\sf\ Volume \: of \: cuboid = L \times\ B \times\ H

\normalsize\dashrightarrow\sf\ Diagnol \: of \: cuboid = \sqrt{L + B + H}

\huge{\underline{\boxed{\frak \pink{Formulae \: of \: Cylinder:- }}}}

Reference of image in shown in diagram

\setlength{\unitlength}{1cm}\begin{picture}(12,4)\thicklines\put(2.7,2.7){$.$}\put(6,3){\circle{2}}\put(6,6){\circle{2}}\put(6,3){\line(0,1){3}}\put(5.3,3){\line(0,1){3}}\put(6.73,3){\line(0,1){3}}\put(6,3){\line(1,0){0.7}}\put(6,6){\line(1,0){0.7}}\put(6.2,6.13){$r$}\put(6.8,4.5){$h$}\end{picture}

\scriptsize\sf{\quad\dag\ r = Radius }

\scriptsize\sf{\quad\dag\ H = Height}

\normalsize\dashrightarrow\sf\ Lateral \: surface \: area \: of \: cylinder = 2 \pi rh

\normalsize\dashrightarrow\sf\ Total \: surface \: area \: of \: cylinder  = 2 \pi r [r + h]

\normalsize\dashrightarrow\sf\ Volume \:   of \: cylinder = 2 \pi rh

\huge{\underline{\boxed{\frak \green{Formulae \: of \: cone :-}}}}

\setlength{\unitlength}{1cm}\begin{picture}(12,4)\thicklines\put(2.7,2.7){$.$}\put(6,6){\circle{2}}\put(6,6){\line(0,1)}}\put(5.29,6){\line(1,3){0.7}}\put(6.73,6){\line(-1,3){0.7}}\put(6,6){\line(1,0){0.7}}\put(6.25,5.73){$r$}\put(6.05,7){$h$}\end{picture}

\scriptsize\sf{\quad\dag\ r = Radius}

\scriptsize\sf{\quad\dag\ l = slant  \: height}

\scriptsize\sf{\quad\dag\ h = Height}

\normalsize\dashrightarrow\sf\ Lateral \: surface \: area \: of \: cone = \pi rl

\normalsize\dashrightarrow\sf\ Total \: surface \: area \: of \: cone = \pi r[r + l]

\normalsize\dashrightarrow\sf\ Volume \: of \: cone = \frac{1}{3} \pi r^2h

\normalsize\dashrightarrow\sf\ slant \: height\: of \: cone(l) = \sqrt{r^{2} + h^{2} }

Answered by Anonymous
3

━━━━━━━━━━━━━━━━━━━━━━━━━

\bf\Huge\red{\mid{\overline{\underline{ ANSWER }}}\mid }

━━━━━━━━━━━━━━━━━━━━━━━━━

\Large\fbox{\color{purple}{QUESTION}}

SURFACE AREA VOLUME FORMULAS

━━━━━━━━━━━━━━━━━━━━━━━━━

\Large\fbox{\color{purple}{ SOLUTION }}

\Large\mathcal\green{FRUSTUM}

 \implies \: tsa = \pi \: l(r1 + r2) + \pi \:  {r1}^{2}  +  \pi {r2}^{2}

 \implies volume =  \frac{1}{3}\pi \: h( {r1}^{2}  + r1.r2 +  {r2}^{2} )

\Large\mathcal\purple{CUBOID}

 \implies \: lsa = 2(l + b)h \\  \\  \:  \implies \: tsa = 2(lb + bl + hl) \\  \\ \implies \:  volume \:  = l \times b \times h

\Large\mathcal\blue{CUBE}

  \implies \: lsa =  {4a}^{2}  \\  \\  \implies \: tsa =  {6a}^{2}  \\  \\  \implies \: volume =  {a}^{3}

\Large\mathcal\brown{CYLINDER}

 \implies \: csa = 2\pi \: r \: h \\  \\  \implies \: tsa  = 2\pi \: r(r + h) \\  \\  \implies \: volume \:  = \pi \:  {r}^{2} h</p><p>

\Large\mathcal\orange{CONE}

 \implies \: tsa \:  = \: \pi \: r \: (l + r)  \\  \\  \implies \: csa \:  =  \pi \: r \: l\\  \\  \implies \: volume \:  =  \frac{1}{3} (\pi \:  {r}^{2} h)

\Large\mathcal\red {SPHERE }

\implies \: tsa \:  = 4\pi \: {r}^{2}  \\  \\  \implies \: csa \:  = 4\pi \:  {r}^{2}  \\  \\  \implies \: volume \:  =  \frac{4}{3}   \: {r}^{3}

\Large\mathcal\pink{HEMISPHERE}

\implies \: tsa \:  =3\pi \:  {r}^{2}   \\  \\  \implies \: csa \:  = 2\pi \:  {r}^{2}  \\  \\  \implies \: volume \:  =  \frac{2}{3} \pi \:  {r}^{3}

━━━━━━━━━━━━━━━━━━━━━━━━━

\bf\Large\red{ THANKS \: FOR \: YOUR}

\bf\Large\red{ QUESTION \: HOPE \: IT  }

\bf\Large\red{ HELPS  }

\Large\mathcal\green{FOLLOW \: ME}

━━━━━━━━━━━━━━━━━━━━━━━━━

Similar questions