Math, asked by paarthdevrai, 23 hours ago

formula to find tan 40⁰ and sin 40⁰​

Answers

Answered by YOURDADPRODUCTION
1

Tan 40 Degrees:-

We can write tan 40o = tan (30 + 10)

we know the formula

tan (A + B) = (tan A + tan B)/ (1 – tan A tan B)

The tangent formula:-

Tan θ = Opposite side/Adjacent side

Tan Values

tan 0° = 0/1 = 0

tan 30° = [(√1/4)/√(3/4)] = 1/√3

tan 45° = 1

tan 60° = [(√3/2)/(½)] = √3

tan 90° = 1/0 = ∞

tan (30 + 10) = (tan 30 + tan 10)/(1 – tan 30 tan 10)

Substitute the approximate value

tan 40° = (0.57735 + 0.176326) /( 1-0.1018)

tan 40° = 0.753676/0.8982

tan 40° = 0.839095

Sin 40 Degrees:-

The value of sin 40 degrees is 0.6427876. . .. Sin 40 degrees in radians is written as sin (40° × π/180°), i.e., sin (2π/9) or sin (0.698131. . .). In this article, we will discuss the methods to find the value of sin 40 degrees with examples.

Sin 40°: 0.6427876. . .

Sin (-40 degrees): -0.6427876. . .

Sin 40° in radians: sin (2π/9) or sin (0.6981317 . . .)

What is the Value of Sin 40 Degrees?

The value of sin 40 degrees in decimal is 0.642787609. . .. Sin 40 degrees can also be expressed using the equivalent of the given angle (40 degrees) in radians (0.69813 . . .).

We know, using degree to radian conversion, θ in radians = θ in degrees × (pi/180°)

⇒ 40 degrees = 40° × (π/180°) rad = 2π/9 or 0.6981 . . .

∴ sin 40° = sin(0.6981) = 0.6427876. . .

Explanation:

For sin 40 degrees, the angle 40° lies between 0° and 90° (First Quadrant). Since sine function is positive in the first quadrant, thus sin 40° value = 0.6427876. . .

Since the sine function is a periodic function, we can represent sin 40° as, sin 40 degrees = sin(40° + n × 360°), n ∈ Z.

⇒ sin 40° = sin 400° = sin 760°, and so on.

Note: Since, sine is an odd function, the value of sin(-40°) = -sin(40°).

Methods to Find Value of Sin 40 Degrees

The sine function is positive in the 1st quadrant. The value of sin 40° is given as 0.64278. . .. We can find the value of sin 40 degrees by:

Using Trigonometric Functions

Using Unit Circle

Sin 40° in Terms of Trigonometric Functions

Using trigonometry formulas, we can represent the sin 40 degrees as:

± √(1-cos²(40°))

± tan 40°/√(1 + tan²(40°))

± 1/√(1 + cot²(40°))

± √(sec²(40°) - 1)/sec 40°

1/cosec 40°

Note: Since 40° lies in the 1st Quadrant, the final value of sin 40° will be positive.

We can use trigonometric identities to represent sin 40° as,

sin(180° - 40°) = sin 140°

-sin(180° + 40°) = -sin 220°

cos(90° - 40°) = cos 50°

-cos(90° + 40°) = -cos 130°

Sin 40 Degrees Using Unit Circle

To find the value of sin 40 degrees using the unit circle:

Rotate ‘r’ anticlockwise to form a 40° angle with the positive x-axis.

The sin of 40 degrees equals the y-coordinate(0.6428) of the point of intersection (0.766, 0.6428) of unit circle and r.

Hence the value of sin 40° = y = 0.6428 (approx)

Similar questions