Math, asked by adityabairagi, 1 year ago

FORMULES OF SURFACE AREAS AND VOLUMES

Answers

Answered by CUTEBARBIE
4
CYLINDER
Volume:   V = r 2 h   
Lateral Surface Area: LSA = 2r h 
(area of the "side" that surrounds the top and bottom circles)
Total Surface Area:    TSA = 2r h + 2r 2 .=2r[r+h]
Volume:   Surface Area: SA = 4r 2[SPHERE]
cone:-
Volume = (1/3)πr2h
Slant Height = √(r2 + h2)Lateral Surface Area = πrs = πr√(r2 + h2)Total Surface Area
= L + B = πrl + πr2 =πr[l+r]frustum of the coneVolume = (1/3)πh (r12 + r22 + (r1 * r2))Slant Height = √((r1 - r2)2 + h2)LSA OF FRUSTUM -π(r1 + r2)lTSA OF FRUSTUM= πR²+πr²+π(r1 + r2)l
cuboid - tsa of cuboid-2[lb+bh+lh]
 lsa of cuboid=2h[l+b]
volume=lbh
 cube-
   tsa  of cube-6[side]²
lsa of cube=4[side]²
volume =[side]³



CUTEBARBIE: plz mark brainlest
Answered by Anonymous
2

━━━━━━━━━━━━━━━━━━━━━━━━━

\bf\Huge\red{\mid{\overline{\underline{ ANSWER }}}\mid }

━━━━━━━━━━━━━━━━━━━━━━━━━

\Large\fbox{\color{purple}{QUESTION}}

SURFACE AREA VOLUME FORMULAS

━━━━━━━━━━━━━━━━━━━━━━━━━

\Large\fbox{\color{purple}{ SOLUTION }}

\Large\mathcal\green{FRUSTUM}

 \implies \: tsa = \pi \: l(r1 + r2) + \pi \:  {r1}^{2}  +  \pi {r2}^{2}

 \implies volume =  \frac{1}{3}\pi \: h( {r1}^{2}  + r1.r2 +  {r2}^{2} )

\Large\mathcal\purple{CUBOID}

 \implies \: lsa = 2(l + b)h \\  \\  \:  \implies \: tsa = 2(lb + bl + hl) \\  \\ \implies \:  volume \:  = l \times b \times h

\Large\mathcal\blue{CUBE}

  \implies \: lsa =  {4a}^{2}  \\  \\  \implies \: tsa =  {6a}^{2}  \\  \\  \implies \: volume =  {a}^{3}

\Large\mathcal\brown{CYLINDER}

 \implies \: csa = 2\pi \: r \: h \\  \\  \implies \: tsa  = 2\pi \: r(r + h) \\  \\  \implies \: volume \:  = \pi \:  {r}^{2} h</p><p>

\Large\mathcal\orange{CONE}

 \implies \: tsa \:  = \: \pi \: r \: (l + r)  \\  \\  \implies \: csa \:  =  \pi \: r \: l\\  \\  \implies \: volume \:  =  \frac{1}{3} (\pi \:  {r}^{2} h)

\Large\mathcal\red {SPHERE }

\implies \: tsa \:  = 4\pi \: {r}^{2}  \\  \\  \implies \: csa \:  = 4\pi \:  {r}^{2}  \\  \\  \implies \: volume \:  =  \frac{4}{3}   \: {r}^{3}

\Large\mathcal\pink{HEMISPHERE}

\implies \: tsa \:  =3\pi \:  {r}^{2}   \\  \\  \implies \: csa \:  = 2\pi \:  {r}^{2}  \\  \\  \implies \: volume \:  =  \frac{2}{3} \pi \:  {r}^{3}

━━━━━━━━━━━━━━━━━━━━━━━━━

\bf\Large\red{ THANKS \: FOR \: YOUR}

\bf\Large\red{ QUESTION \: HOPE \: IT  }

\bf\Large\red{ HELPS  }

\Large\mathcal\green{FOLLOW \: ME}

━━━━━━━━━━━━━━━━━━━━━━━━━

Similar questions