Math, asked by MOHAMED2332, 1 month ago

four angle of a quadrilateral are in the ratio 4:8:16:32 the greatest angle is __________​

Answers

Answered by genius150809
2

Answer:

192°

Step-by-step explanation:

sum of angles in a quadrilateral is 360 degree

let the common factors of the ratio be x

so the angles are

4x

8x

16x

32x

4x+8x+16x+32x=360°

60x=360°

x=6°

largest is obviously 32x=32×6=192°

so answer is 192°

hope it helps

pls mark as brainliest

Answered by XItzNobitaxX
74

{\large{\bf{\red{\underline{Given :}}}}}

  • Four angle of a quadrilateral are in the ratio 4:8:16:32.

 ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄

{\large{\bf{\blue{\underline{To Find :}}}}}

  • Find the measure of largest angle.

 ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄

{\large{\bf{\orange{\underline{Solution :}}}}}

Remember that :

Sum of all angles of quadrilateral = 360°

Let the ratios be x :

{\sf{\purple{4x}}}

{\sf{\purple{8x}}}

{\sf{\purple{16x}}}

{\sf{\purple{32x}}}

Now,

{\sf{\purple{4x + 8x + 16x + 32x = 360°}}}

{\sf{\purple{60x = 360°}}}

{\sf{\purple{X =  {\cancel\frac{360}{60} }}}}

{\red{\boxed{\bf{X = 6}}}}

Than,

{\red{\mapsto{\bf{Angle \:  1 = 4x = 4  \times 6 = 24°}}}}

{\red{\mapsto{\bf{Angle  \: 2 = 8x = 8  \times 6 = 48°}}}}

{\red{\mapsto{\bf{Angle  \: 3 = 16x = 16 \times  6 = 96°}}}}

</p><p>{\red{\mapsto{\bf{Angle  \: 4 = 32x = 32  \times 6 = 192°}}}}

For varification :

24° + 48° + 96° + 192° = 360°

 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: {\red{\underbrace{\blue{\bf{Hence ,Verified}}}}}

So,

{\sf{\green{Th e \:  largest  \: angle \:  is  \: 192°.}}}

 ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄

Similar questions