four chairs and three tables coast rs 2100 and five chairs and two tables coast rs 1750 find the coast of a chair and table seprately
Answers
Answered by
0
chair = CTables = T4C+3T=2100 ---eqn--i
5C+2T=1750----eqn---ii------------------4C*2+3T*2=2100 *25C*3+2T*3=1750*3-------------------------8C+6T=420015C+6T=5250--------------------- - --7T = -1050T=1050/7=rs.150put value of T in eqn-i4C+3T=21004C+3*150=21004C+450=21004C=2100-450=1650C=1650/4C=412.5
5C+2T=1750----eqn---ii------------------4C*2+3T*2=2100 *25C*3+2T*3=1750*3-------------------------8C+6T=420015C+6T=5250--------------------- - --7T = -1050T=1050/7=rs.150put value of T in eqn-i4C+3T=21004C+3*150=21004C+450=21004C=2100-450=1650C=1650/4C=412.5
Answered by
0
Let the cost of 1 table be ₹x and 1 chair be ₹y
3x+4y=2100 ----eq-1
2x+5y=1750 ----eq-2
2x =1750-5y
x =(1750-5y)/2 ------eq-3
On substituting the value of x in eq 1 we get,
3(1750/2-5y/2)+4y=2100
5250/2-15y/2 =2100
2625-15y/2 =2100
-15y/2 =2100-2625
-15y = -525 × 2
-y =-525/15 ×2
y = ₹70
On putting the value of y in eq-2 we get,
2x+5(70)=1750
2x = 1750- 350
2x = 1400
x = 700
Cost of 1 chair=₹70 and 1 table = ₹700
3x+4y=2100 ----eq-1
2x+5y=1750 ----eq-2
2x =1750-5y
x =(1750-5y)/2 ------eq-3
On substituting the value of x in eq 1 we get,
3(1750/2-5y/2)+4y=2100
5250/2-15y/2 =2100
2625-15y/2 =2100
-15y/2 =2100-2625
-15y = -525 × 2
-y =-525/15 ×2
y = ₹70
On putting the value of y in eq-2 we get,
2x+5(70)=1750
2x = 1750- 350
2x = 1400
x = 700
Cost of 1 chair=₹70 and 1 table = ₹700
Similar questions