Four consective natural numbers have product 840.Find numbers.
Answers
let the four consecutive numbers be x, (x+1), (x+2) and (x+3) respectively
According to the question:
x (x+1) (x+2) (x+3) = 840
=> (x² + x) (x² + 5x + 3) = 840
=> x⁴ + 6x³ + 11x² + 6x = 840
Now putting values for this polynomial, p(x)
p(x) = x⁴ + 6x³ + 11x² + 6x = 840
=> p(x) = x⁴ + 6x³ + 11x² + 6x - 840
If x = 1
p(1) = (1)⁴ + 6(1)³ + 11(1)² + 6(1) - 840
= -816
If x = 2
p(2) = (2)⁴ + 6(2)³ + 11(2)² + 6(2) - 840
= -720
If x = 3
p(3) = (3)⁴ + 6(3)³ + 11(3)² + 6(3) - 840
= -480
If x = 4
p(4) = (4)⁴ + 6(4)³ + 11(4)² + 6(4) - 840
= 0
So, x = 4 (First number)
(x+1) = 5 (Second number)
(x+2) = 6 (Third number)
(x+3) = 7 (Fourth number)
So, the consecutive numbers are 4,5,6 and 7
Answer:
let the four consecutive numbers be x, (x+1), (x+2) and (x+3) respectively
According to the question:
x (x+1) (x+2) (x+3) = 840
=> (x² + x) (x² + 5x + 3) = 840
=> x⁴ + 6x³ + 11x² + 6x = 840
Now putting values for this polynomial, p(x)
p(x) = x⁴ + 6x³ + 11x² + 6x = 840
=> p(x) = x⁴ + 6x³ + 11x² + 6x - 840
If x = 1
p(1) = (1)⁴ + 6(1)³ + 11(1)² + 6(1) - 840
= -816
If x = 2
p(2) = (2)⁴ + 6(2)³ + 11(2)² + 6(2) - 840
= -720
If x = 3
p(3) = (3)⁴ + 6(3)³ + 11(3)² + 6(3) - 840
= -480
If x = 4
p(4) = (4)⁴ + 6(4)³ + 11(4)² + 6(4) - 840
= 0
So, x = 4 (First number)
(x+1) = 5 (Second number)
(x+2) = 6 (Third number)
(x+3) = 7 (Fourth number)
So, the consecutive numbers are 4,5,6 and 7