Math, asked by kumarvelimela, 4 months ago

Four equal circles are described about the four corners of a square so that each circle touches two of the others Find the area of the space enclosed between the circumstances of the circles,each side of the square measuring 24cm​

Answers

Answered by abhi569
6

Answer:

123.43 cm²

Step-by-step explanation:

Note that: sum of diameters of 2 circles is equal to the length of the side of square.   Let the radii of the circles be r.

⇒ (diameter) + (diameter) = 24cm

⇒ (2r) + (2r) = 24 cm

⇒ r = 6 cm

Thus,

area of 1 circle = πr² = (22/7) 6²

                        = 113.14 cm²

Area of 4 such circles = 4*113.14

                         = 452.57 cm²

If it is about the area enclosed between the circumference and square:

Area enclosed between the circumference  of the circles and square =

⇒ area of square - area of 4 circles

⇒ side² - 452.57

⇒ 24² - 452.57

⇒ 123.43 cm²

Answered by BRAINLYxKIKI
20

{\fcolorbox{black}{black}{\orange{Question\:»»»»}}}

Four equal circles are described about the four corners of a square so that each circle touches two of the others Find the area of the space enclosed between the circumstances of the circles,each side of the square measuring 24cm.

{\fcolorbox{black}{black}{\green{Answer\:»»»»}}}

  • Side of the square = 24 cm

  • Radius of the circle =  \sf{\dfrac{24}{2}}
  • ㅤㅤ" ""ㅤㅤ" = 12 cm

° Area of the quadrant of one circle

ㅤㅤㅤㅤㅤㅤ= \sf{\dfrac{1}{4} π r²}

ㅤㅤㅤㅤㅤㅤ=  \sf{\dfrac{1}{4} \times \dfrac{22}{7} \times 12 \times 12}

ㅤㅤㅤㅤㅤㅤ=  \sf{\dfrac{792}{7}}

ㅤㅤㅤㅤㅤㅤ= \sf{113.14} cm²

  • Area of the quadrants of four circles

ㅤㅤㅤㅤㅤㅤ= 113.14 × 4

ㅤㅤㅤㅤㅤㅤ= 452.56 cm²

  • Now , Area of square = ( s )²

ㅤㅤㅤㅤㅤㅤ= ( 24 )²

ㅤㅤㅤㅤㅤㅤ= 576 c

Now , \sf{Area_{(Square)} \:-\: Area_{(Quadrant\:of\:circles)}}

  • = ( 576 - 452.56 ) cm²

  • = 123.44 cm²ㅤㅤㅤAns...

ㅤㅤㅤ

ㅤㅤㅤ ʙʀɪɴʟʏ×ɪɪ

Similar questions