Math, asked by kunju2462, 1 year ago

Four fifths of a number is10 more than two thirds of the number

Answers

Answered by Anonymous
8

Answer :-

The number is 75.

Solution :-

Let the number be x

Four - fifth of a number = 4/5 * x = 4x/5

Two - third of a number = 2/3 * x = 2x/3

10 more than two - third of the number = 2x/3 + 10

Given that

Four - fifth of a number = 10 more than two - third of the number

⇒ 4x/5 = 2x/3 + 10

Transpose 2x/3 to LHS

⇒ 4x/5 - 2x/3 = 10

Taking LCM

⇒ 4x(3)/5(3) - 2x(5)/3(5) = 10

⇒ 12x/15 - 10x/15 = 10

⇒ (12x - 10x)/15 = 10

⇒ 2x/15 = 10

Transpose 2/15 to RHS

⇒ x = 10 * 15/2

⇒ x = 5 * 15

⇒ x = 75

Therefore the number is 75.

Verification :-

4x/5 = 2x/3 + 10

Substitute x = 75 in the above equation.

⇒ 4(75)/5 = 2(75)/3 + 10

⇒ 4(15) = 2(25) + 10

⇒ 60 = 50 + 10

⇒ 60 = 60

Answered by Sauron
8

\mathfrak{\large{\underline{\underline{Answer :-}}}}

The Number is 75

\mathfrak{\large{\underline{\underline{Explanation :-}}}}

\text{\underline{\underline{\purple{Given :}}}}

\tt{\dfrac{4}{5}} of a number is = 10 more than \tt{\dfrac{2}{3}} of the same Number

\text{\underline{\underline{\purple{To Find :}}}}

The Number

\text{\underline{\underline{\purple{Solution :}}}}

Consider the Number as x

\boxed{\tt{\frac{4}{5} \: of \: x =  \frac{2}{3} \: of \: x+ 10}}

\tt{\longrightarrow} \: \dfrac{4}{5}  \times x =  \left(\dfrac{2}{3}\ \times x \right)+ 10

\tt{\longrightarrow} \: \dfrac{4x}{5}= \dfrac{2x}{3}+ 10

\tt{\longrightarrow} \: \dfrac{4x}{5} - \dfrac{2x}{3}=10

LCM of 5 and 3 is = 15

\tt{\longrightarrow} \: \dfrac{12x - 10x}{15} =10

\tt{\longrightarrow} \: \dfrac{2x}{15} =10

\tt{\longrightarrow} \: 2x = 10 \times 15

\tt{\longrightarrow} \: 2x = 150

\tt{\longrightarrow} \: x =  \dfrac{150}{2}

\tt{\longrightarrow} \: x = 75

\therefore The Number is 75.

\rule{300}{1.5}

\mathfrak{\large{\underline{\underline{Verification :-}}}}

As We got the number, we can verify it by substituting the value of x. If both the sides (LHS & RHS) are equal, that means the answer is Correct.

\tt{\longrightarrow} \: \dfrac{4}{5}  \times 75=  \left(\dfrac{2}{3}\ \times75 \right)+ 10

\tt{\longrightarrow} \: 15 \times 4 =   (2 \times 25)+ 10

\tt{\longrightarrow} \:60 = 50 + 10

\tt{\longrightarrow} \:60 = 60

\therefore The Number is 75.

Similar questions