Four identical isosceles triangle AWB, BXC, CYD and DZE are arranged,
as shown, with points A, B, C, D and E lying on the same straight line. A
new triangle is formed with sides the same length as AX, AY and AZ. If
AZ = AE, the area of this new triangle in terms of x is euqal to
Answers
Answer:
x²√15
Step-by-step explanation:
AB = BC = CD = DE = x
Let say AW = BW = BX = CX = CY = DY = DZ = EZ = Y
and equal angle of isosceles = α
AX² = AB² + BY² - 2AB.BYCos(180 - α)
=> AX² = x² + y² + 2xyCosα (Cos(180 - α) = - cosα)
Similarly
AY² = AC² + CY² - 2AC.CYCos(180 - α)
=> AY² = (2x)² + y² + 2(2x)ycosα
=> AY² = 4x² + y² + 4xycosα
AZ² = 9x² + y² + 6xycosα
AZ = AE = 4x
16x² = 9x² + y² + 6xyCosα
AZ² = AE² + EZ² -2AE.EZCosα
=> (4x)² = (4x)² + y² - 2(4x)yCosα
=> y² = 8xyCosα
Using this value
16x² = 9x² + 8xyCosα + 6xyCosα
=> 7x² = 14xyCosα
=> x² = 2xyCosα
y²/x² = 4
=> y² = 4x²
using y² = 4x² & x² = 2xyCosα
AX² = x² + 4x² + x² = 6x²
AY² = 4x² + 4x² + 2x² = 10x²
AZ² = 9x² + 4x² + 3x² = 16x²
AX = x√6 , AY = x√10 & AZ = 4x
s = x(4 + √6 + √10)/2
Using Hero's formula
Area = √s(s-AX)(s-AY)(s-AZ)
Solving this we get
= x²√15