Math, asked by aurora7597, 4 months ago

Four particles of masses m, 2m, 3m and 4m are kept at 4 corners of a square of side 1m. Find the centre of mass of the system about the mass m placed at origin.!!!!


Answers

Answered by BrainlyEmpire
321

\large\underline{\pink{\sf \orange{\bigstar} Given:-}}⠀⠀⠀⠀⠀⠀⠀⠀

⠀⠀⠀⠀⠀⠀⠀⠀

The masses of four particles are

  • First particle (m₁) = m
  • Second particle (m₂) = 2m
  • Third particle (m₃) = 3m
  • Fourth particle (m₄) = 4m

⠀⠀⠀⠀⠀⠀⠀⠀

\large\underline{\red{\sf \orange{\bigstar} To Find:-}}

⠀⠀⠀⠀⠀⠀⠀⠀

  • The centre of mass of the system about the mass m placed at the origin.

  • The co-ordinated in which the particles are lying are,
  • → (0,0) ; (1,0) ; (1,1) ; (0,1)

  • \boxed{\boxed{\bf x_1 = 0,\ x_2 = 1,\ x_3 = 1,\ x_4 = 0 }}

⠀⠀⠀⠀⠀⠀⠀⠀

⠀⠀⠀⠀⠀⠀⠀⠀

  • \boxed{\boxed{\bf y_1 = 0,\ y_2 = 0,\ y_3 = 1,\ y_4 = 1 }}

⠀⠀⠀⠀⠀⠀⠀⠀

\large\underline{\green{\sf \orange{\bigstar} Now:-}}

⠀⠀⠀⠀⠀⠀⠀⠀

⠀⠀⠀⠀⠀⠀⠀⠀

  • Applying for the formula for the X-component of the centre of mass,

⠀⠀⠀⠀⠀⠀⠀⠀

⠀⠀⠀⠀⠀⠀⠀⠀

  • \boxed{X_{cm} = \dfrac{m_{1}x_{1}+m_{2}x_{2}+m_{3}x_{3}+m_{4}x_{4}}{m_{1}+m_{2}+m_{3}+m_{4}}}

⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀

\large\underline{\blue{\sf \orange{\bigstar} Putting \:\:the\:\: respective\:\: values\:\: of,\:\: we\:\: get }}⠀⠀⠀⠀⠀

⠀⠀⠀⠀⠀⠀⠀⠀

  • X_{cm} = \dfrac{m(0)+2m(1)+3m(1)+4m(0)}{m+2m+3m+4m}

⠀⠀⠀⠀⠀⠀⠀⠀

  • X_{cm} = \dfrac{2m+3m}{10m}

⠀⠀⠀⠀⠀⠀⠀⠀

  • X_{cm} = \dfrac{5\not{m}}{10 \not{m}}

⠀⠀⠀⠀⠀⠀⠀⠀

  • Both numerator and denominator can be divided by 2.

⠀⠀⠀⠀⠀⠀⠀⠀

  • \boxed{\boxed{X_{cm} = \dfrac{1}{2}}}

⠀⠀⠀⠀⠀⠀⠀⠀

  • Applying for the formula for the Y-component of the centre of mass,

  • \boxed{Y_{cm} = \dfrac{m_{1}y_{1}+m_{2}y_{2}+m_{3}y_{3}+m_{4}y_{4}}{m_{1}+m_{2}+m_{3}+m_{4}}}

⠀⠀⠀⠀⠀⠀⠀⠀

\large\underline{\red{\sf \orange{\bigstar} Putting \:\:the\:\: respective\:\: values\:\: of,\:\: we\:\: get }}

⠀⠀⠀⠀⠀⠀⠀⠀

  • Y_{cm} = \dfrac{m(0)+2m(0)+3m(1)+4m(1)}{m+2m+3m+4m}

⠀⠀⠀⠀⠀⠀⠀⠀

  • Y_{cm} = \dfrac{3m+4m}{10m}

⠀⠀⠀⠀⠀⠀⠀⠀

  • X_{cm} = \dfrac{7\not{m}}{10\not{m}}

⠀⠀⠀⠀⠀⠀⠀⠀

  • X_{cm} = \dfrac{7}{10}

⠀⠀⠀⠀⠀⠀⠀⠀

\large\underline{\green{\sf \orange{\bigstar} Hence:-}}

  • The coordinates for the centre of mass should be written as,
  • \boxed{(X_{cm}, Y_{cm})=(\frac{1}{2},\frac{7}{10})}⠀⠀⠀⠀⠀⠀⠀⠀

⠀⠀⠀⠀⠀⠀⠀⠀

⠀⠀⠀⠀⠀⠀⠀⠀

⠀⠀⠀⠀⠀⠀⠀⠀

⠀⠀⠀⠀⠀⠀⠀⠀

\large\underline{\red{\sf \orange{\bigstar} Note:-}}⠀⠀⠀⠀⠀

⠀⠀⠀⠀⠀⠀⠀⠀

⠀⠀⠀⠀⠀⠀⠀⠀

⠀⠀⠀⠀⠀⠀⠀⠀

  • \large\underline{\green{\sf \orange{\bigstar} Diagram\:\: is\:\:  in\:\:  attachment! }}
Attachments:
Answered by Anonymous
48

Answer:

\large\underline{\pink{\sf \orange{\bigstar} Given:-}}⠀⠀⠀⠀⠀⠀⠀⠀

⠀⠀⠀⠀⠀⠀⠀⠀

The masses of four particles are

First particle (m₁) = m

Second particle (m₂) = 2m

Third particle (m₃) = 3m

Fourth particle (m₄) = 4m

⠀⠀⠀⠀⠀⠀⠀⠀

\large\underline{\blue{\sf \orange{\bigstar} To Find:-}}

⠀⠀⠀⠀⠀⠀⠀⠀

The centre of mass of the system about the mass m placed at the origin.

The co-ordinated in which the particles are lying are,

→ (0,0) ; (1,0) ; (1,1) ; (0,1)

\boxed{\boxed{\bf x_1 = 0,\ x_2 = 1,\ x_3 = 1,\ x_4 = 0 }}

⠀⠀⠀⠀⠀⠀⠀⠀

⠀⠀⠀⠀⠀⠀⠀⠀

\boxed{\boxed{\bf y_1 = 0,\ y_2 = 0,\ y_3 = 1,\ y_4 = 1 }}

⠀⠀⠀⠀⠀⠀⠀⠀

\large\underline{\blue{\sf \orange{\bigstar} Now:-}}

⠀⠀⠀⠀⠀⠀⠀⠀

⠀⠀⠀⠀⠀⠀⠀⠀

Applying for the formula for the X-component of the centre of mass,

⠀⠀⠀⠀⠀⠀⠀⠀

⠀⠀⠀⠀⠀⠀⠀⠀

\boxed{X_{cm} = \dfrac{m_{1}x_{1}+m_{2}x_{2}+m_{3}x_{3}+m_{4}x_{4}}{m_{1}+m_{2}+m_{3}+m_{4}}}

⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀

\large\underline{\blue{\sf \orange{\bigstar} Putting \:\:the\:\: respective\:\: values\:\: of,\:\: we\:\: get }}⠀⠀⠀⠀⠀

⠀⠀⠀⠀⠀⠀⠀⠀

X_{cm} = \dfrac{m(0)+2m(1)+3m(1)+4m(0)}{m+2m+3m+4m}

⠀⠀⠀⠀⠀⠀⠀⠀

X_{cm} = \dfrac{2m+3m}{10m}

⠀⠀⠀⠀⠀⠀⠀⠀

X_{cm} = \dfrac{5\not{m}}{10 \not{m}}

⠀⠀⠀⠀⠀⠀⠀⠀

Both numerator and denominator can be divided by 2.

⠀⠀⠀⠀⠀⠀⠀⠀

\boxed{\boxed{X_{cm} = \dfrac{1}{2}}}

⠀⠀⠀⠀⠀⠀⠀⠀

Applying for the formula for the Y-component of the centre of mass,

\boxed{Y_{cm} = \dfrac{m_{1}y_{1}+m_{2}y_{2}+m_{3}y_{3}+m_{4}y_{4}}{m_{1}+m_{2}+m_{3}+m_{4}}}

⠀⠀⠀⠀⠀⠀⠀⠀

\large\underline{\pink{\sf \orange{\bigstar} Putting \:\:the\:\: respective\:\: values\:\: of,\:\: we\:\: get }}

⠀⠀⠀⠀⠀⠀⠀⠀

Y_{cm} = \dfrac{m(0)+2m(0)+3m(1)+4m(1)}{m+2m+3m+4m}

⠀⠀⠀⠀⠀⠀⠀⠀

Y_{cm} = \dfrac{3m+4m}{10m}

⠀⠀⠀⠀⠀⠀⠀⠀

X_{cm} = \dfrac{7\not{m}}{10\not{m}}

⠀⠀⠀⠀⠀⠀⠀⠀

X_{cm} = \dfrac{7}{10}

⠀⠀⠀⠀⠀⠀⠀⠀

\large\underline{\blue{\sf \orange{\bigstar} Hence:-}}

The coordinates for the centre of mass should be written as,

\boxed{(X_{cm}, Y_{cm})=(\frac{1}{2},\frac{7}{10})}⠀⠀⠀⠀⠀⠀⠀⠀

⠀⠀⠀⠀⠀⠀⠀⠀

⠀⠀⠀⠀⠀⠀⠀⠀

⠀⠀⠀⠀⠀⠀⠀⠀

⠀⠀⠀⠀

Similar questions