English, asked by saipradeep64, 1 year ago

four quadrant operation of Chopper

Answers

Answered by sashank39
2
First Quadrant

During the first quadrant operation the chopper CH4 will be on . Chopper CH3 will be off and CH1 will be operated.  AS the CH1 and CH4 is on the load voltage v0 will be equal to the source voltage Vs  and the load current i0 will begin to flow . v0 and i0 will be positive as the first quadrant operation is taking place. As soon as the chopper CH1 is turned off, the positive current freewheels through CH4  and the diode D2 .  The type E chopper acts as a step- down chopper in the first quadrant.

Second Quadrant

In this case the chopper CH2 will be operational and the other three are kept off. As  CH2 is on  negative current will starts flowing through the inductor L . CH2 ,E and D4.  Energy is stored in the inductor L as the chopper CH2 is on. When CH2 is off the current will be fed back to the source through the diodes D1 and D4. Here (E+L.di/dt) will be more than the source voltage Vs  . In second quadrant the chopper will act as a step-up chopper as the power is fed back from load to source

Third Quadrant

In third quadrant operation CH1 will be kept off , CH2 will be  on and CH3 is operated. For this quadrant working the polarity of the load should be reversed. As the chopper CH3 is on, the load gets connected to the source  Vs and  v0 and i0 will be negative  and the third quadrant operation will takes place. This chopper acts as a step-down chopper

Fourth Quadrant

CH4 will be operated and CH1, CH2 and CH3 will be off. When the chopper CH4 is turned on positive current starts to flow through CH4, D2 ,E and the inductor L will store energy. As the CH4 is turned off the current is feedback to the source through the diodes D2 and D3 , the operation will be in fourth quadrant as the load voltage is negative but the load current is positive. The chopper acts as a step up chopper as the power is fed back from load to source.

Hope this will help you..

saipradeep64: thank you very much
saipradeep64: send me the circuir diagrams of each quadrants
sashank39: how could i send you the graph
sashank39: Plz Mark it as brainlist so then I can edit my answer with graphs of four quadrants
Answered by vikramanguraj3284005
1

First Quadrant


During the first quadrant operation the chopper CH4 will be on . Chopper CH3 will be off and CH1 will be operated.  AS the CH1 and CH4 is on the load voltage v0 will be equal to the source voltage Vs  and the load current i0 will begin to flow . v0 and i0 will be positive as the first quadrant operation is taking place. As soon as the chopper CH1 is turned off, the positive current freewheels through CH4  and the diode D2 .  The type E chopper acts as a step- down chopper in the first quadrant.


Second Quadrant


In this case the chopper CH2 will be operational and the other three are kept off. As  CH2 is on  negative current will starts flowing through the inductor L . CH2 ,E and D4.  Energy is stored in the inductor L as the chopper CH2 is on. When CH2 is off the current will be fed back to the source through the diodes D1 and D4. Here (E+L.di/dt) will be more than the source voltage Vs  . In second quadrant the chopper will act as a step-up chopper as the power is fed back from load to source


Third Quadrant


In third quadrant operation CH1 will be kept off , CH2 will be  on and CH3 is operated. For this quadrant working the polarity of the load should be reversed. As the chopper CH3 is on, the load gets connected to the source  Vs and  v0 and i0 will be negative  and the third quadrant operation will takes place. This chopper acts as a step-down chopper


Fourth Quadrant


CH4 will be operated and CH1, CH2 and CH3 will be off. When the chopper CH4 is turned on positive current starts to flow through CH4, D2 ,E and the inductor L will store energy. As the CH4 is turned off the current is feedback to the source through the diodes D2 and D3 , the operation will be in fourth quadrant as the load voltage is negative but the load current is positive. The chopper acts as a step up chopper as the power is fed back from load to source.




Similar questions