Math, asked by visalivisakai604, 3 months ago

Fourier sine transform of 1/x​

Answers

Answered by itzrithvik
1

I hope it will help you....

Attachments:
Answered by Pratham2508
0

Answer:

I=\sqrt{\frac{2}{π} } [tan^{-1}(\frac{s}{a} ) ]+c

Step-by-step explanation:

For initial condition, putting s=0, then c=0

Therefore, from (2), we have

I=\sqrt{\frac{2}{π} } [tan^{-1}(\frac{x}{a} ) ] = > F{f(x)}=\sqrt{\frac{2}{π} } [tan^{-1}(\frac{x}{a} ) ]

F(s)=\sqrt{\frac{2}{π} } [tan^{-1}(\frac{x}{a} ) ] = > F{{f(x)}}=\sqrt{\frac{2}{π} } [tan^{-1}(\frac{x}{a} ) ]

F(s)=\sqrt{\frac{2}{π} } [tan^{-1}(\frac{x}{a} ) ]

f_{x} (\frac{e^{-ax} }{x} )=\sqrt{\frac{2}{π} } [tan^{-1}(\frac{x}{a} ) ]

\sqrt{\frac{2}{π} }\int\limits^0_x {\frac{e^{-ax} }{x} } \,sinx(sx) dx  =\sqrt{\frac{2}{π} } [tan^{-1}(\frac{x}{a} ) ]

#SPJ3

Similar questions