Math, asked by jhamikeyks, 1 month ago

fourteen times a number is 49 more than the square of the number. find the number

Answers

Answered by ryansteve558
2

Step-by-step explanation:

let no. be x

ATQ

14 x= 49+x^2

x^2-14x+49=0

(x-7)^2=0

x=7

7 is the no.

Answered by Anonymous
5

Answer:

Step-by-step explanation:

LET THE NUMBER BE x

14 x = x² +49

- x² +14 x - 49 = 0

−x  

2

+14x−49

Quadratic polynomial can be factored using the transformation ax  

2

+bx+c=a(x−x  

1

​  

)(x−x  

2

​  

), where x  

1

​  

 and x  

2

​  

 are the solutions of the quadratic equation ax  

2

+bx+c=0.

−x  

2

+14x−49=0

All equations of the form ax  

2

+bx+c=0 can be solved using the quadratic formula:  

2a

−b±  

b  

2

−4ac

​  

 

​  

. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.

x=  

2(−1)

−14±  

14  

2

−4(−1)(−49)

​  

 

​  

 

Square 14.

x=  

2(−1)

−14±  

196−4(−1)(−49)

​  

 

​  

 

Multiply −4 times −1.

x=  

2(−1)

−14±  

196+4(−49)

​  

 

​  

 

Multiply 4 times −49.

x=  

2(−1)

−14±  

196−196

​  

 

​  

 

Add 196 to −196.

x=  

2(−1)

−14±  

0

​  

 

​  

 

Take the square root of 0.

x=  

2(−1)

−14±0

​  

 

Multiply 2 times −1.

x=  

−2

−14±0

​  

 

Factor the original expression using ax  

2

+bx+c=a(x−x  

1

​  

)(x−x  

2

​  

). Substitute 7 for x  

1

​  

 and 7 for x  

2

​  

.

−x  

2

+14x−49=−(x−7)(x−7)

Similar questions