Math, asked by saidulislamnlp2016, 2 months ago

\frac { 5 } { x - 1 } + \frac { 1 } { y - 2 } = 2 \cdot \frac { 6 } { x - 1 } - \frac { 8 } { y - 2 } = 1​

Answers

Answered by varadad25
4

Question:

Solve the following simultaneous equations:

\displaystyle{\sf\:\dfrac{5}{x\:-\:1}\:+\:\dfrac{1}{y\:-\:2}\:=\:2}

\displaystyle{\sf\:\dfrac{6}{x\:-\:1}\:-\:\dfrac{8}{y\:-\:2}\:=\:1}

Answer:

\displaystyle{\boxed{\red{\sf\:(\:x\:,\:y\:)\:=\:\left(\:\dfrac{63}{17}\:,\:\dfrac{60}{7}\:\right)\:}}}

Step-by-step-explanation:

The given simultaneous equations are

\displaystyle{\sf\:\dfrac{5}{x\:-\:1}\:+\:\dfrac{1}{y\:-\:2}\:=\:2\:\qquad\cdots\:(\:1\:)}

\displaystyle{\sf\:\dfrac{6}{x\:-\:1}\:-\:\dfrac{8}{y\:-\:2}\:=\:1\:\qquad\cdots\:(\:2\:)}

\displaystyle{\sf\:Let\:\dfrac{1}{x\:-\:1}\:=\:a\:}

\displaystyle{\sf\:And\:\dfrac{1}{y\:-\:2}\:=\:b\:}

By substituting these values in equation ( 1 ),

\displaystyle{\sf\:\dfrac{5}{x\:-\:1}\:+\:\dfrac{1}{y\:-\:2}\:=\:2\:\qquad\cdots\:(\:1\:)}

\displaystyle{\implies\sf\:5\:\times\:\dfrac{1}{x\:-\:1}\:+\:1\:\times\:\dfrac{1}{y\:-\:2}\:=\:2}

\displaystyle{\implies\sf\:5a\:+\:b\:=\:2\:}

\displaystyle{\implies\sf\:b\:=\:2\:-\:5a}

\displaystyle{\implies\:\boxed{\sf\:b\:=\:-\:5a\:+\:2\:}\sf\:\qquad\cdots\:(\:3\:)}

By substituting

\displaystyle{\sf\:\dfrac{1}{x\:-\:1}\:=\:a\:}

\displaystyle{\sf\:And\:\dfrac{1}{y\:-\:2}\:=\:b\:} in equation ( 2 ),

\displaystyle{\sf\:\dfrac{6}{x\:-\:1}\:-\:\dfrac{8}{y\:-\:2}\:=\:1\:\qquad\cdots\:(\:2\:)}

\displaystyle{\implies\sf\:6\:\times\:\dfrac{1}{x\:-\:1}\:-\:8\:\times\:\dfrac{1}{y\:-\:2}\:=\:1\:}

\displaystyle{\implies\sf\:6a\:-\:8b\:=\:1}

\displaystyle{\implies\sf\:6a\:-\:8\:(\:-\:5a\:+\:2\:)\:=\:1\:\qquad\cdots\:[\:From\:(\:3\:)\:]}

\displaystyle{\implies\sf\:6a\:+\:40a\:-\:16\:=\:1}

\displaystyle{\implies\sf\:46a\:=\:1\:+\:16}

\displaystyle{\implies\sf\:46a\:=\:17}

\displaystyle{\implies\:\boxed{\green{\sf\:a\:=\:\dfrac{17}{46}}}}

By substituting this value in equation ( 3 ), we get,

\displaystyle{\sf\:b\:=\:-\:5a\:+\:2\:\qquad\cdots\:(\:3\:)}

\displaystyle{\implies\sf\:b\:=\:-\:5\:\times\:\dfrac{17}{46}\:+\:2}

\displaystyle{\implies\sf\:b\:=\:\dfrac{-\:85}{46}\:+\:2}

\displaystyle{\implies\sf\:b\:=\:\dfrac{-\:85\:+\:2\:\times\:46}{46}}

\displaystyle{\implies\sf\:b\:=\:\dfrac{-\:85\:+\:92}{46}}

\displaystyle{\implies\:\boxed{\purple{\sf\:b\:=\:\dfrac{7}{46}}}}

Now, by re-substituting the values of a and b, we get,

\displaystyle{\sf\:\dfrac{1}{x\:-\:1}\:=\:a\:}

\displaystyle{\implies\sf\:\dfrac{1}{x\:-\:1}\:=\:\dfrac{17}{46}}

\displaystyle{\implies\sf\:46\:=\:17\:(\:x\:-\:1\:)}

\displaystyle{\implies\sf\:17x\:-\:17\:=\:46}

\displaystyle{\implies\sf\:17x\:=\:46\:+\:17}

\displaystyle{\implies\sf\:17x\:=\:63}

\displaystyle{\implies\:\boxed{\pink{\sf\:x\:=\:\dfrac{63}{17}}}}

Now,

\displaystyle{\sf\:\dfrac{1}{y\:-\:2}\:=\:b\:}

\displaystyle{\implies\sf\:\dfrac{1}{y\:-\:2}\:=\:\dfrac{7}{46}}

\displaystyle{\implies\sf\:46\:=\:7\:(\:y\:-\:2\:)}

\displaystyle{\implies\sf\:7y\:-\:14\:=\:46}

\displaystyle{\implies\sf\:7y\:=\:46\:+\:14}

\displaystyle{\implies\sf\:7y\:=\:60}

\displaystyle{\implies\:\boxed{\blue{\sf\:y\:=\:\dfrac{60}{7}}}}

\displaystyle{\therefore\:\underline{\boxed{\red{\sf\:(\:x\:,\:y\:)\:=\:\left(\:\dfrac{63}{17}\:,\:\dfrac{60}{7}\:\right)\:}}}}

Similar questions