Math, asked by arunsharmah4, 4 months ago

\frac{5sin^{2}(30)^{o}+cos^{2}(45)^{o}-4tan^{2}(30)^{o})}
{2sin(30^{o})cos(30^{o})+tan(45^{o})}​

Answers

Answered by gotoo000612y
40

Correct Question »

\displaystyle\bf{\dfrac{5\sin^230°+\cos^245°-4\tan^230°}{2\sin30°.\cos30°+\tan45°}}

Analysis

Here we're given an equation \displaystyle\rm{\dfrac{5\sin^230°+\cos^245°-4\tan^230°}{2\sin30°.\cos30°+\tan45°}} And we've to find the value of the equation. And we know that :

\dashrightarrow\rm{\sin30°=\dfrac{1}{2}}

\dashrightarrow\rm{\cos30°=\dfrac{\sqrt{3}}{2}}

\dashrightarrow\rm{\cos45°=\dfrac{1}{\sqrt{2}}}

\dashrightarrow\rm{\tan30°=\dfrac{1}{\sqrt{3}}}

\dashrightarrow\rm{\tan45°=1}

Given

\displaystyle\rm{Equation=\dfrac{5\sin^230°+\cos^245°-4\tan^230°}{2\sin30°.\cos30°+\tan45°}}

To Find

The value of the given equation.

Answer

\displaystyle\rm{\dfrac{5\sin^230°+\cos^245°-4\tan^230°}{2\sin30°.\cos30°+\tan45°}}

\displaystyle\implies\rm{\dfrac{5\Big(\dfrac{1}{2}\Big)^2+\Big(\dfrac{1}{\sqrt{2}}\Big)^2-4\Big(\dfrac{1}{\sqrt{3}}\Big)^2}{2\Big(\dfrac{1}{2}\Big).\Big(\dfrac{\sqrt{3}}{2}\Big)+\Big(1\Big)}}

\displaystyle\implies\rm{\dfrac{5\Big(\dfrac{1}{4}\Big)+\Big(\dfrac{1}{2}\Big)-4\Big(\dfrac{1}{3}\Big)}{\cancel{2}\Big(\dfrac{1}{\cancel{2}}\Big).\Big(\dfrac{\sqrt{3}}{2}\Big)+\Big(1\Big)}}

\displaystyle\implies\rm{\dfrac{\Big(\dfrac{5}{4}\Big)+\Big(\dfrac{1}{2}\Big)-\Big(\dfrac{4}{3}\Big)}{\Big(1\Big).\Big(\dfrac{\sqrt{3}}{2}\Big)+\Big(1\Big)}}

\displaystyle\rm{\dfrac{\Big(\dfrac{15}{12}\Big)+\Big(\dfrac{6}{12}\Big)-\Big(\dfrac{16}{12}\Big)\qquad\big[LCM(2,3,4=15)\big]}{\Big(\dfrac{\sqrt{3}}{2}\Big)+\Big(1\Big)}}

\displaystyle\implies\rm{\dfrac{\Big(\dfrac{15+6-16}{12}\Big)}{\Big(\dfrac{\sqrt{3}}{2}\Big)+\Big(1\Big)}}

\displaystyle\implies\rm{\dfrac{\Big(\dfrac{5}{12}\Big)}{\Big(\dfrac{\sqrt{3}+2}{2}\Big)}}

\displaystyle\implies\rm{\dfrac{\Big(\dfrac{5}{\cancel{12}}\Big)}{\Big(\dfrac{\sqrt{3}+2}{\cancel{2}}\Big)}}

\displaystyle\implies\rm{\dfrac{\Big(\dfrac{5}{6}\Big)}{\Big(\sqrt{3}+2\Big)}}

\displaystyle\implies\rm{\dfrac{5}{6\Big(\sqrt{3}+2\Big)}}

\displaystyle\implies\rm{\dfrac{5}{6\sqrt{3}+12}}

{\boxed{\boxed{\implies{\bf{\dfrac{5}{6\sqrt{3}+12}\checkmark}}}}}

Hence the value of the given equation is \displaystyle\rm{\dfrac{5}{6\sqrt{3}+12}} which is the required answer.

HOPE IT HELPS.

Answered by HearthackerKittu17
2

{\huge\fbox\pink{Q}\fbox\blue{U}\fbox\purple{e}\fbox\green{S}\fbox\red{T}\fbox\orange{I}\fbox{O}\fbox\gray{n}}

●▬▬▬▬๑۩۩๑▬▬▬▬▬●

\frac{5sin^{2}(30)^{o}+cos^{2}(45)^{o}-4tan^{2}(30)^{o})}</p><p>{2sin(30^{o})cos(30^{o})+tan(45^{o})}

●▬▬▬▬๑۩۩๑▬▬▬▬▬●

\huge\boxed{\fcolorbox{black}{red}{ƛnsweR}}

Explanation:

●▬▬▬▬๑۩۩๑▬▬▬▬▬●

\displaystyle\implies\rm{\dfrac{5\Big(\dfrac{1}{2}\Big)^2+\Big(\dfrac{1}{\sqrt{2}}\Big)^2-4\Big(\dfrac{1}{\sqrt{3}}\Big)^2}{2\Big(\dfrac{1}{2}\Big).\Big(\dfrac{\sqrt{3}}{2}\Big)+\Big(1\Big)}}

\displaystyle\implies\rm{\dfrac{5\Big(\dfrac{1}{4}\Big)+\Big(\dfrac{1}{2}\Big)-4\Big(\dfrac{1}{3}\Big)}{\cancel{2}\Big(\dfrac{1}{\cancel{2}}\Big).\Big(\dfrac{\sqrt{3}}{2}\Big)+\Big(1\Big)}}

\displaystyle\implies\rm{\dfrac{\Big(\dfrac{5}{4}\Big)+\Big(\dfrac{1}{2}\Big)-\Big(\dfrac{4}{3}\Big)}{\Big(1\Big).\Big(\dfrac{\sqrt{3}}{2}\Big)+\Big(1\Big)}}

\displaystyle\rm{\dfrac{\Big(\dfrac{15}{12}\Big)+\Big(\dfrac{6}{12}\Big)-\Big(\dfrac{16}{12}\Big)\qquad\big[LCM(2,3,4=15)\big]}{\Big(\dfrac{\sqrt{3}}{2}\Big)+\Big(1\Big)}}

\displaystyle\implies\rm{\dfrac{\Big(\dfrac{15+6-16}{12}\Big)}{\Big(\dfrac{\sqrt{3}}{2}\Big)+\Big(1\Big)}}

\displaystyle\implies\rm{\dfrac{\Big(\dfrac{5}{12}\Big)}{\Big(\dfrac{\sqrt{3}+2}{2}\Big)}}

\displaystyle\implies\rm{\dfrac{\Big(\dfrac{5}{\cancel{12}}\Big)}{\Big(\dfrac{\sqrt{3}+2}{\cancel{2}}\Big)}}

\displaystyle\implies\rm{\dfrac{\Big(\dfrac{5}{6}\Big)}{\Big(\sqrt{3}+2\Big)}}

\displaystyle\implies\rm{\dfrac{5}{6\Big(\sqrt{3}+2\Big)}}

\displaystyle\implies\rm{\dfrac{5}{6\sqrt{3}+12}}

{\boxed{\boxed{\implies{\bf{\dfrac{5}{6\sqrt{3}+12}\checkmark}}}}}

☞ Hence the value of the given equation is \displaystyle\rm{\dfrac{5}{6\sqrt{3}+12}}which is the required answer.

●▬▬▬▬๑۩۩๑▬▬▬▬▬●

\rm\underline\purple{Hope \: its \: help \: you \:☺}

\huge\boxed{\fcolorbox{black}{orange}{Brƛinlist\: Please ✔}}

\huge \boxed {\underline {\frak \red {★Khushi★}}}

\huge{\large\blue{\mathbb\fcolorbox{red}{black}{⛄Fʀᴏᴍ⛄}}}

{\mathbb{\colorbox {darkblue} {\boxed{\boxed{\boxed{\boxed{\boxed{\colorbox {lime}{\boxed{\boxed{\boxed{\boxed{\boxed{\colorbox {aqua} {@HearthackerKittu17}}}}}}}}}}}}}}}

Similar questions