Math, asked by zeelpanchal456, 1 month ago

\frac{ 8 ^ { ^ { \frac{ 1 }{ 3 } } } \times 16 ^ { \frac{ 1 }{ 3 } } }{ 32 ^ { \frac{ -1 }{ 3 } } }​

Answers

Answered by sivasubramani894
0

Answer:

sinteeta by costeeta! (+) ó86&:jasne-#+@#

Step-by-step explanation:

ekkenrnejrjejrjrnrrkrmrmrrkkrmrmrmrmrmrmemrmrmrmrmrmrndmmrrnmrmrmrmrmrmrmrmrmrmrjssjejusueusuejsjsjjsjjejehhehyhhhehehegeheheheheyyetteueyeyyeyewhwhhewjwjwujwjwbegenevs

Answered by steffiaspinno
0

\frac{ 8 ^ { ^ { \frac{ 1 }{ 3 } } } \times 16 ^ { \frac{ 1 }{ 3 } } }{ 32 ^ { \frac{ -1 }{ 3 } } }=16

Explanation:

Given Equation:

  ==>   \frac{ 8 ^ { ^ { \frac{ 1 }{ 3 } } } \times 16 ^ { \frac{ 1 }{ 3 } } }{ 32 ^ { \frac{ -1 }{ 3 } } }

We have Three values in the equation

==>Let's  Solve it separately

Solve 8^{\frac{1}{3} }

\frac{1}{3}  in the power is the cube root

so, we can write it as,

8^{\frac{1}{3} } = \sqrt[3]{8}

\sqrt[3]{8} = \sqrt[3]{2X2X2}

8^{\frac{1}{3} } = 2

==> Solve 16^{\frac{1}{3} }

16^{\frac{1}{3} } = \sqrt[3]{16}

\sqrt[3]{16} = \sqrt[3]{2X2X2X2}

16^{\frac{1}{3} } = 2√2

==> Solve 32^{\frac{-1}{3} }

==> 32^{(-1)(\frac{1}{3} )}

==>  \sqrt[3]{32}^{-1}

==> \sqrt[3]{32}^{-1}  = (\sqrt[3]{2X2X2X2})^{-1}

==>  \sqrt[3]{32}^{-1}  = \sqrt[3]{2X2X2X2X2}^{-1}

==>  \sqrt[3]{32}^{-1}=2\sqrt{4}^{-1}

Substitute all the values

\frac{ 8 ^ { ^ { \frac{ 1 }{ 3 } } } \times 16 ^ { \frac{ 1 }{ 3 } } }{ 32 ^ { \frac{ -1 }{ 3 } } }=\frac{2\times2\sqrt{2} }{2\sqrt{4^{-1} } }

\frac{ 8 ^ { ^ { \frac{ 1 }{ 3 } } } \times 16 ^ { \frac{ 1 }{ 3 } } }{ 32 ^ { \frac{ -1 }{ 3 } } }=4\sqrt{2} \times2\sqrt{4}

\frac{ 8 ^ { ^ { \frac{ 1 }{ 3 } } } \times 16 ^ { \frac{ 1 }{ 3 } } }{ 32 ^ { \frac{ -1 }{ 3 } } }=8\sqrt[3]{8}

\frac{ 8 ^ { ^ { \frac{ 1 }{ 3 } } } \times 16 ^ { \frac{ 1 }{ 3 } } }{ 32 ^ { \frac{ -1 }{ 3 } } }=8\times2

\frac{ 8 ^ { ^ { \frac{ 1 }{ 3 } } } \times 16 ^ { \frac{ 1 }{ 3 } } }{ 32 ^ { \frac{ -1 }{ 3 } } }=16

Similar questions