\frac { ( \cos \theta + i \sin \theta ) ^ { 4 } } { ( \sin \theta + i \cos \theta ) ^ { 5 } }
Answers
Answered by
0
Step-by-step explanation:
Euler's formula
e^{i\theta}=cos\theta+i\:sin\thetae
iθ
=cosθ+isinθ
Now,
\frac{(cos\:\theta+i\:sin\:\theta)^4}{(sin\:\theta+i\:cos\:\theta)^5}
(sinθ+icosθ)
5
(cosθ+isinθ)
4
=\frac{(cos\:\theta+i\:sin\:\theta)^4}{i^5(cos\:\theta-i\:sin\:\theta)^5}=
i
5
(cosθ−isinθ)
5
(cosθ+isinθ)
4
\begin{lgathered}=\frac{(e^{i\theta})^4}{i(e^{-i\theta})^5}\\\\=(-i)\frac{e^{i4\theta}}{e^{-i5\theta}}\\\\=(-i)e^{i9\theta}\end{lgathered}
=
i(e
−iθ
)
5
(e
iθ
)
4
=(−i)
e
−i5θ
e
i4θ
=(−i)e
i9θ
\begin{lgathered}=-i[cos9\theta+i\:sin9\theta]\\\\=-icos9\theta-i^2sin9\theta\\\\=sin9\theta-icos9\theta\end{lgathered}
=−i[cos9θ+isin9θ]
=−icos9θ−i
2
sin9θ
=sin9θ−icos9θ
Answered by
8
Answer:
DO AB THANKS
Step-by-step explanation:
HAVE A GREAT DAY
Similar questions