Math, asked by syamjulie, 1 year ago

∫frac{x^{2} } / [ {(x^{2} } +4)({x^{2} +9)] dx

Answers

Answered by Anonymous
36

Correct Question :

∫\frac{ {x}^{2} }{ ({x}^{2} + 4 )( {x}^{2}  + 9)}</u><u>dx</u><u>  \\  \\

Solution:

Put

 {x}^{2}  = y

 \frac{ {x}^{2} }{( {x}^{2}  + 4)( {x}^{2}  + 9)}  =  \frac{y}{(y + 4)(y + 9)}  ........(1)

Let

 \frac{y}{(y + 4)(y + 9)}  =  \frac{A}{(y + 4)}  +  \frac{B}{y + 9} ........(2)

Multiplying by (y+4)(y+9)

y ≡ A(y+9)+B(y+4)

Putting y= -4

=> -4= A(-4+9)

=> A=-4/5

Putting y =-9

=> -9= B (-9+4)

=>B=9/5

From (2)

 \frac{y}{(y + 4)(y + 9)}  =   \frac{ \frac{ - 4}{5} }{y + 4}  +  \frac{ \frac{9}{5} }{y + 9}  \\  \\  =  &gt;    \frac{ {x}^{2} }{( {x}^{2}  + 4)( {x}^{2}  + 9)}  =  \frac{ \frac{ - 4}{5} }{ {x}^{2} + 4 }  +  \frac{ \frac{9}{5} }{ {x}^{2}  + 9}  \\  \\

Therefore

∫ \frac{ {x}^{2} }{( {x}^{2} + 4)( {x}^{2}  + 9) } dx \\  \\  =  \frac{ - 4}{5} ∫ \frac{1}{ {2}^{2}  +  {x}^{2} }  +  \frac{9}{5} ∫ \frac{1}{ {3}^{2}  +  {x}^{2} }  \\  \\  =  \frac{ - 4}{5}  \times  \frac{1}{2}  {tan}^{ - 1}  \frac{x}{2}  +  \frac{9}{5}  \times  \frac{1}{3} tan ^{ - 1}  \frac{x}{3}  + c \\  \\  =  \frac{ - 2}{5}  {tan}^{ - 1}  \frac{x}{2}  +  \frac{3}{2}  {tan}^{ - 1}  \frac{x}{3}  + c

Hope it helps uh


Anonymous: Awsome one !!
Similar questions