CBSE BOARD X, asked by nawathesrushti78, 1 month ago

\frac{x+y-8}{2}=\frac{x+2y-14}{3}=\frac{3x-y}{4} 2 x+y−8 ​ = 3 x+2y−14 ​ = 4 3x−y
plz Moderators or expert give correct answer...​

Answers

Answered by DeeznutzUwU
3

       \underline{\bold{Answer:}}

       (2,6)

       \underline{\bold{Step-by-step-explaination:}}

       \text{The given equation is:}

       \boxed{\frac{x+ y- 8}{2} = \frac{x+2y-14}{3} = \frac{3x-y}{4} }

       \text{We can solve this by taking two equations at a time}

       \text{Taking the first two equations}

\implies \boxed{\frac{x+ y- 8}{2} = \frac{x+2y-14}{3}}

       \text{Cross multiplying...}

\implies \boxed{(x+ y- 8)(3) = (x+2y-14)(2)}

       \text{Simplifying the equation}

\implies \boxed{3x+ 3y- 24 = 2x+4y-28}

       \text{Transposing the terms from R.H.S into L.H.S}

\implies \boxed{3x+ 3y- 24 - 2x - 4y + 28 = 0}

       \text{Simplifying the equation}

\implies \boxed{x- y+ 4 = 0}\text{ ------(i)}

       \text{Taking the first and the last equation}

\implies \boxed{\frac{x+ y- 8}{2} = \frac{3x-y}{4} }

       \text{Cross multiplying...}

\implies \boxed{(x+y-8)(4) = (3x-y)(2)}

       \text{Simplifying the equation}

\implies \boxed{(x+y-8)(2) = 3x-y}

       \text{Further simplifying the equation}

\implies \boxed{2x+2y-16 = 3x-y}

       \text{Transposing the terms from R.H.S into L.H.S}

\implies \boxed{2x+2y-16 -3x+y=0}

       \text{Simplifying the equation}

\implies \boxed{-x+3y-16=0} \text{ ------(ii)}

       \text{Now, taking the last two equations}

\implies\boxed{\frac{x+2y-14}{3} = \frac{3x-y}{4} }

       \text{Cross multiplying...}

\implies\boxed{(x+2y-14)(4) = (3x-y)(3)}

       \text{Simplifying the equation}

\implies\boxed{4x+8y-56 = 9x-3y}

       \text{Transposing the terms from R.H.S into L.H.S}

\implies\boxed{4x+8y-56 -9x+3y=0}

       \text{Simplifying the equation}

\implies\boxed{-5x+11y-56 =0} \text{ ------(iii)}

       \text{Now that we've got 3 linear equations i.e (i), (ii) and (iii) we can now}\\\text{normally solve them}

       \text{Adding (i) and (ii)}

\implies \boxed{x-y+4 -x + 3y - 16= 0}

       \text{Simplifying the equation}

\implies \boxed{ 2y - 12= 0}

       \text{Transposing 14 to R.H.S}

\implies \boxed{ 2y = 12}

       \text{Transposing 2 to R.H.S}

\implies \boxed{y = \frac{12}2}

       \text{Simplifying the equation}

\implies \boxed{y = 6}

       \text{Now substituting the value of }y \text{ in (i)}

\implies \boxed{x- 6+ 4 = 0}

       \text{Simplifying the equation}

\implies \boxed{x- 2 = 0}

       \text{Transposing 3 to R.H.S}

\implies \boxed{x= 2 }

       \text{Now we must substitute the values of } x\text{ and }y\text{, obtained by} \\\text{solving (i) and (ii), into (iii) in order to confirm the answer}      

\implies\boxed{-5(2)+11(6)-56 =0}

       \text{Simplifying the equation}

\implies\boxed{-10+66-56 =0}

       \text{Further simplifying the equation}

\implies\boxed{0 = 0}

\implies (2,6) \text{ is the solution}

Similar questions