Math, asked by shreyankrishna9, 6 months ago

frame a quadratic equation in x when roots are (2+√5) and (2-√5)

Answers

Answered by Anonymous
1

Given:-

Roots of the quadratic equation = (2+√5) and (2-√5)

To find:-

The quadratic equation.

Assumption:-

Let \alpha and \beta be two zeroes of the required quadratic equation.

\sf{\alpha} = (2+√5)

\sf{\beta} = (2-√5)

Solution:-

We know,

A quadratic equation is always in the form,

\sf{x^2 - (\alpha + \beta)x + \alpha\beta}

Putting the values,

\sf{x^2 - [(2+\sqrt{5}) + (2-\sqrt{5})]x + [(2+\sqrt{5})(2-\sqrt{5})]}

= \sf{x^2 - [2+\sqrt{5} + 2-\sqrt{5}]c + [(2)^2 - (\sqrt{5})^2]}

\sf{\because (a+b)(a-b) = a^2 - b^2}

= \sf{x^2 - [4 + \cancel{\sqrt{5}} - \cancel{\sqrt{5}}]x + [4-5]}

= \sf{x^2 - (4)x + (-1)}

= \sf{x^2 - 4x - 1}

Hence the required quadratic equation is x² - 4x - 1.

______________________________________

Verification:-

Let us verify that the quadratic equation we got is correct or not.

We know,

Sum of zeroes = \sf{\dfrac{-Coefficient\:of\:x}{Coefficient\:of\:x^2}}

= \sf{(2+\sqrt{5}) + (2-\sqrt{5}) = \dfrac{-(-4)}{1}}

= \sf{2+\sqrt{5} + 2 - \sqrt{5} = 4}

= \sf{4 = 4}

Product of zeroes = \sf{Constant\:Term}{Coefficient\:of\:x^2}}

= \sf{(2+\sqrt{5})(2-\sqrt{5}) = \dfrac{-1}{1}}

\sf{\because (a+b)(a-b) = a^2 - b^2}

= \sf{(2)^2 - (\sqrt{5})^2 = -1}

= \sf{4-5 = -1}

= \sf{-1 = -1}

Hence Verified!!!

______________________________________

Similar questions