frame a quadratic polynomial whose sum and product are -3 and 2
Answers
Sum of zeros (\alpha\:+\beta) = a
Product of zeros (\alpha\beta) = \dfrac{1}{a}
_______________ [GIVEN]
• We have to find the quadratic equation.
____________________________
» Sum of zeros = (\alpha\:+\beta) = a
» Product of zeros = \alpha\beta = \dfrac{1}{a}
We know that..
x² - (Sum of zeros)x + Product of zeros = 0
OR
x² - (\alpha\:+\beta)x + \alpha\beta = 0
\implies x² - (a)x + \dfrac{1}{a} = 0
\implies \dfrac{a {x}^{2} \: - \: {a}^{2}x \: + \: 1}{a} = 0
____________________________
ax² - a²x + 1 is the quadratic polynomial.
Let A and B be the roots of the quadratic polynomial.
Then, A+B= -3
AB= 2
The required polynomial is X^2 - (A+B)X + AB
=> X^2 - (-3)X + 2
=> X^2 + 3X + 2