Math, asked by suhana123450, 10 months ago

Frame five questions of such inter-related branches of mathematics. Use at least two branches of maths per question and give it’s solution.​

Answers

Answered by GOODBADBoy
2

2+2=4 how. prove

answer: 4-2=2

this a branch from addition

Answered by arpitravi34
6

Answer:

...1: Use Euclid’s division lemma to show that the square of any positive integer is either of the form 3m or 3m + 1 for some integer m.

Solution: Let x be any positive integer and y =3.

By Euclid’s division algorithm;

x =3q +r (for some integer q ≥ 0 and r = 0, 1, 2 as r ≥ 0 and r < 3)

Therefore,

x = 3q, 3q+1 and 3q+2

As per the given question, if we take the square on both the sides, we get;

x2 = (3q)2 = 9q2 = 3.3q2

Let 3q2 = m

Therefore,

x2 = 3m ………………….(1)

x2 = (3q+1)2 = (3q)2 +12 +2 × 3q × 1 = 9q2 + 1 + 6q = 3(3q2 +2q) + 1

Substitute, 3q2+2q = m, to get,

x2 = 3m + 1 ……………………………. (2)

x2 = (3q+2)2 = (3q)2+22+2 × 3q × 2 = 9q2 + 4 + 12q = 3 (3q2 + 4q + 1) + 1

Again, substitute, 3q2+4q+1 = m, to get,

x2 = 3m + 1…………………………… (3)

Hence, from eq. 1, 2 and 3, we conclude that, the square of any positive integer is either of the form 3m or 3m + 1 for some integer m.

Q.2: Express each number as a product of its prime factors:

(i) 140

(ii) 156

(iii) 3825

(iv) 5005

(v) 7429

Solutions:

(i) 140

By Taking the LCM of 140, we will get the product of its prime factor.

Therefore, 140 = 2 × 2 × 5 × 7 × 1 = 22×5×7

(ii) 156

By Taking the LCM of 156, we will get the product of its prime factor.

Hence, 156 = 2 × 2 × 13 × 3 × 1 = 22 × 13 × 3

(iii) 3825

By Taking the LCM of 3825, we will get the product of its prime factor.

Hence, 3825 = 3 × 3 × 5 × 5 × 17 × 1 = 32 52×17

(iv) 5005

By Taking the LCM of 5005, we will get the product of its prime factor.

Hence, 5005 = 5 × 7 × 11 × 13 × 1 = 5 × 7 × 11 × 13

(v) 7429

By Taking the LCM of 7429, we will get the product of its prime factor.

Hence, 7429 = 17 × 19 × 23 × 1 = 17 × 19 × 23

Step-by-step explanation:

......Brainliest plz and click on the heart....

Similar questions