Math, asked by joya57, 8 months ago

Friend Simply this

1/√3 +√2 -1/√2 -√3

Answers

Answered by Anonymous
22

\sf\large\underline\blue{Given:-}

 \\  = { \bold{ \dfrac{1}{ \sqrt{3}  +  \sqrt{2} } -  \dfrac{1}{ \sqrt{2} -  \sqrt{3}}}} \\

\sf\large\underline\blue{To\: Simplify :-}

 \\  = { \bold{ \dfrac{1}{ \sqrt{3}  +  \sqrt{2} } -  \dfrac{1}{ \sqrt{2} -  \sqrt{3}}}} \\

\sf\large\underline\blue{Formula\: used:-}

• a² - b² = ( a + b) ( a - b)

\sf\large\underline\blue{Solution:-}

\small{\underline{\sf{\green{Let-}}}}

the function be

 ↦ { \bold{x =  \dfrac{1}{ \sqrt{3}  +  \sqrt{2} } -  \dfrac{1}{ \sqrt{2} -  \sqrt{3}}}} \\

( Rationalization of denominator )

 ↦ { \bold{x =  \dfrac{1}{ \sqrt{3}  +  \sqrt{2}} \times  \dfrac{ \sqrt{3}  -  \sqrt{2} }{ \sqrt{3}  -  \sqrt{2} }  -  \left  \{\dfrac{1}{ \sqrt{2} -  \sqrt{3}} \times  \dfrac{ \sqrt{2}  +  \sqrt{3}  }{ \sqrt{2}  + \sqrt{3} } \right \} }} \\

 ↦ { \bold{x =  \dfrac{ \sqrt{3}  -  \sqrt{2} }{ (\sqrt{3}  +  \sqrt{2})(\sqrt{3}  -  \sqrt{2}) }  -  \left  \{  \dfrac{ \sqrt{2}  +  \sqrt{3}  }{( \sqrt{2} -  \sqrt{3})( \sqrt{2}   +   \sqrt{3}) } \right \} }} \\

↦ { \bold{x =  \dfrac{ \sqrt{3}  -  \sqrt{2} }{ (\sqrt{3})^{2}   - ( \sqrt{2})^{2}  }  -  \left  \{  \dfrac{ \sqrt{2}  +  \sqrt{3}  }{( \sqrt{2} )^{2} - ( \sqrt{3})^{2}} \right \} }} \\

 ↦{ \bold{x =  \dfrac{ \sqrt{3}  -  \sqrt{2} }{ 3 - 2}  -  \left  \{  \dfrac{ \sqrt{2}  +  \sqrt{3}  }{2 - 3} \right \} }} \\

  ↦ { \bold{x =  \dfrac{ \sqrt{3}  -  \sqrt{2} }{1}  -  \left  \{  \dfrac{ \sqrt{2}  +  \sqrt{3}  }{ - 1} \right \} }} \\

 ↦ { \bold{x =  { \sqrt{3}  -  \sqrt{2} }   +  { \sqrt{2}  +  \sqrt{3} }}} \\

 ↦ { \bold{x =  { 2\sqrt{3}  }}} \\

\small{\underline{\sf{\blue{Hence-}}}}

Value of x is = 2√3

Answered by jatingigulia67
5

Answer:

2√3 is the answer ......

Similar questions