Math, asked by ANKITKUMARRAJYADAV, 1 year ago

friends answer my question

Attachments:

Answers

Answered by isyllus
0

AB║ CD, CB⊥AB (Given)

    Let DM ⊥ AB

Then,   BC=DM=p and CD=BM=q

In ΔBCD, BD =√(p²+q²)

∠ADB = Θ,   ∠ABD =∠BDC =∝,

∴∠ADC=Θ+∝ ,  ∠BAD=180-(Θ+∝)

AB/SinΘ = BD / Sin(180-(Θ+∝)) = AD/sin∝

AB = BD SinΘ/Sin(Θ+∝)

     =BD²  SinΘ/ BD Sin(Θ+∝)

      =(p²+q²) SinΘ/ BD (SinΘCos∝+CosΘSin∝)

       =(p²+q²) SinΘ/ BD [SinΘ. q/BD+CosΘ. p/BD]

       =( p²+q²)SinΘ/    BD/BD [qsinΘ+pcosΘ]

       = (p²+q²)SinΘ/ p cosΘ+q sinΘ

Similar questions