Math, asked by ramlaxman24, 10 months ago

friends, please answer this question ​

Attachments:

Answers

Answered by tennetiraj86
1

Answer:

answer for the given problem is given

Attachments:
Answered by BrainlyTornado
5

\rule{200}{2}

QUESTION:

 \displaystyle  \lim_{x \to \infty} \frac{2x + 7 \sin x}{4x + 2 \cos x}

\rule{200}{2}

ANSWER:

 \displaystyle  \lim_{x \to \infty} \frac{2x + 7 \sin x}{4x + 2 \cos x}  =  \frac{1}{2}

\rule{200}{2}

GIVEN:

 \displaystyle  \lim_{x \to \infty} \frac{2x + 7 \sin x}{4x + 2 \cos x}

\rule{200}{2}

TO FIND:

The \ value \ of \  \displaystyle  \lim_{x \to \infty} \frac{2x + 7 \sin x}{4x + 2 \cos x}

\rule{200}{2}

EXPLANATION:

 \displaystyle  \lim_{x \to \infty} \frac{2x + 7 \sin x}{4x + 2 \cos x}  \\  \\  \\  \displaystyle   \frac{2  (\infty) + 7 \sin (\infty)}{4(\infty) + 2 \cos (\infty)}  \\  \\  \\   \frac{\infty}{\infty} = not \ d efined

 \displaystyle  \lim_{x \to \infty} \frac{2x + 7 \sin x}{4x + 2 \cos x}  \\  \\  \\ Take \ x  \ as  \ common \ on \\ both \  numerator \ and \ denominator} \\  \\  \\  \displaystyle  \lim_{x \to \infty} \frac{x \left(2 +  \dfrac{7 \sin x}{x} \right)}{x \left(4 +  \dfrac{2 \cos x}{x} \right)}

 \boxed{ \large  { \displaystyle  \lim_{x \to \infty} \frac{  \sin x}{x} = \displaystyle  \lim_{x \to \infty}  \frac{ \cos x}{x} = 0}}

 \displaystyle  \lim_{x \to \infty} \frac{7 \sin x}{x} = \displaystyle  \lim_{x \to \infty}  \frac{2 \cos x}{x} = 0

 \dfrac{ \cancel{x} (2 +0)}{ \cancel{x }(4 + 0)}   \implies  \dfrac{2}{4} =  \dfrac{1}{2}

 \boxed {\bold{Hence \:  \:  \displaystyle  \lim_{x \to \infty} \frac{2x + 7 \sin x}{4x + 2 \cos x}  =  \frac{1}{2} }}

\rule{200}{2}

Similar questions