Math, asked by johnsonraphael777, 10 months ago

FRIENDS, PLS SOLVE THIS Q FOR ME..I WILL VOTE IT THE BRAINLIEST ANS IF U DO IT RIGHT..

Attachments:

Answers

Answered by rishu6845
9

Answer:

\boxed{\green{\huge{9}}}

Step-by-step explanation:

\underline{\bold{Given}} =  >  {sin}^{ - 1} x +  {sin}^{  - 1} y +  {sin}^{ - 1} z =  \dfrac{3\pi}{2}

\underline{\bold{To \: find}} =  > value \: of \:  {(x + y + z)}^{2}

\underline{\bold{Concept \: used}}=  >  \\range \: of \:  {sin}^{ - 1}  \: is \:  \:  | -  \dfrac{  \pi}{2} \: \:  \:   \dfrac{\pi}{2}  |  \\ so \: maximum \: value \: of \:  {sin}^{ - 1}  \: is \:  \dfrac{\pi}{2}

\underline{\bold{Solution }}=  >  \\  { sin }^{ - 1} x +  {sin}^{ - 1} y +  {sin}^{ - 1} z =  \dfrac{3\pi}{2}

 =  >  {sin}^{ - 1} x +  {sin}^{ - 1} y +  {sin}^{ - 1} z =  \dfrac{\pi}{2}  +  \dfrac{\pi}{2}  +  \dfrac{\pi}{2}

maximum \: value \: of \:  {sin}^{ - 1}  \: is \:  \dfrac{\pi}{2}  \:  \\ so \: above \: equation \: is \: true \: only \: when

 =  >  {sin}^{ - 1} x =  \dfrac{\pi}{2} \\  =  >  {sin}^{ - 1}  y =  \dfrac{\pi}{2}  \\  =  >  {sin}^{ - 1}  z =  \dfrac{\pi}{2}

now

 {sin}^{ - 1} x =  \dfrac{\pi}{2}  \\  =  > x \:  = sin \dfrac{\pi}{2} \\  =  > x = 1  \\ simlary \:  \\ y = 1 \:  \: and \:  \: z = 1

now

 {(x + y + z)}^{2}  = (1 + 1 + 1) ^{2} \\  \:  \:  \:  \:  \:  \:  \: \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:   =    {(3)}^{2}  \\  =  >  {(x + y + z)}^{2}  = 9

Similar questions