Math, asked by prachi3779, 9 months ago

friends pls tell me the solution step by step pls ​

Attachments:

Answers

Answered by Anonymous
73

Step-by-step explanation:

\Large{\red{\underline{\underline{\sf{\blue{Given:}}}}}}

\sf \dfrac{5+2 \sqrt{3}}{7+4 \sqrt{3}}\:=\:a-b \sqrt{3}

⠀⠀⠀⠀⠀⠀ ‎ ‎ ‎ ‎ ‎ ‎

\Large{\red{\underline{\underline{\sf{\pink{To\:find:}}}}}}

Value of a and b

⠀⠀⠀⠀⠀⠀

\Large{\red{\underline{\underline{\sf{\green{Solution:}}}}}}

⠀⠀⠀⠀⠀⠀

\sf \dfrac{5+2 \sqrt{3}}{7+4 \sqrt{3}}\:=\:a-b \sqrt{3}

⠀⠀⠀⠀⠀⠀

\textsf{Rationalising the denominator}

⠀⠀⠀⠀⠀⠀

\sf \dfrac{5+2 \sqrt{3}}{7+4 \sqrt{3}}\times \dfrac{7-4 \sqrt{3}}{7-4 \sqrt{3}}

⠀⠀⠀⠀⠀⠀

\sf using\:identity\:(a-b)\times (a+b)\:=\:a^2-b^2

⠀⠀⠀⠀⠀⠀

\sf \dfrac{(5+2 \sqrt{3})\times (7-4 \sqrt{3})}{7^2- (4 \sqrt{3})^2}

⠀⠀⠀⠀⠀⠀

\sf \dfrac{35-20 \sqrt{3}+14 \sqrt{3}-8 \times 3}{49-48}

⠀⠀⠀⠀⠀⠀

\sf \dfrac{35-24-6\sqrt{3}}{1}

⠀⠀⠀⠀⠀⠀

\sf \:=\: 11-6\sqrt{3}

⠀⠀⠀⠀⠀⠀

\sf a\:=\:11\:,\:b\:=\:-6\sqrt{3}

Answered by Anonymous
3

Question:-

Find a and b of

 \frac{5 + 2 \sqrt{3} }{7 + 4 \sqrt{3} }  = a - b \sqrt{3}

Solution:-

By the use of rationalization, we get

 \to \frac{5 + 2 \sqrt{3} }{7 + 4 \sqrt{3} }  \times  \frac{7 - 4 \sqrt{3} }{7 - 4 \sqrt{3} }

Use this identity

i) ( a + b ) × ( c - d ) = (a × c - a × d + b × c - b × d )

ii) ( a - b ) ( a + b ) = ( a² - b² )

Now

 \to \:  \frac{(5 + 2 \sqrt{3} )(7 - 4 \sqrt{3} )}{(7) {}^{2} - (4 \sqrt{3}  ) {}^{2} }

 \to \:  \frac{35 - 20 \sqrt{3}  + 14 \sqrt{3} - 8 \times 3 }{49 - 48}

 \to \:  \frac{35 - 24 - 6 \sqrt{3} }{1}

 \to \: 11 - 6 \sqrt{3}

Value of a = 11 and b = 6

Similar questions