Math, asked by jeevankishorbabu9985, 2 months ago

Friends Solve This
   \huge{ \red {\tt{\int \frac{((sin x + cos x) ^ 2)}{(sqrt(1 + sin 2x))} dx \:  from \:  0 \:  to  \:  \pi / 2 =}}}

Answers

Answered by vipinkumar212003
1

Step-by-step explanation:

 {\int_0 }^{ \frac{\pi}{2} } \frac{ {( \sin x +  \cos x ) }^{2} }{ \sqrt{1 +  \sin 2x} } dx  \\= {\int_0 }^{ \frac{\pi}{2} } \frac{ {( \sin x +  \cos x ) }^{2} }{ \sqrt{ {\sin }^{2}x +  {  \cos}^{2} x  + 2 \sin x. \cos x } } dx \\= {\int_0 }^{ \frac{\pi}{2} } \frac{ {( \sin x +  \cos  x ) }^{2} }{ \sqrt{{(\sin x +  \cos x ) }^{2}} } dx \\= {\int_0 }^{ \frac{\pi}{2} } \frac{ {( \sin  x +  \cos x ) }^{2} }{ (\sin  x +  \cos  x ) } dx \\= {\int_0 }^{ \frac{\pi}{2} } ( \sin x +  \cos x )  dx \\= {\int_0 }^{ \frac{\pi}{2} }  \sin  xdx + {\int_0 }^{ \frac{\pi}{2} }  \cos xdx\\  =  {[  -  \cos x  ]}^{ \frac{\pi}{2} }_0  + {[ \sin  x  ]}^{ \frac{\pi}{2} }_0 \\  = [ -  \cos  \frac{\pi}{2}  - ( -  \cos 0)] + [  \sin   \frac{\pi}{2}  -   \sin  0]  \\  =  [ -  0  +  1] + [ 1  -     0]  \\  = 2 \\  \\\red{\mathfrak{ \large{\underline{{Hope \: It \: Helps \: You}}}}} \\ \blue{\mathfrak{ \large{\underline{{Mark \: Me \: Brainliest}}}}}

Answered by RudeHero
5

no!

how can a community with 59% be in minority

pls try again

Attachments:
Similar questions