From a circle of radius 15 cm., a sector with angle 216 degrees is cut out and its bounding radii are bent so as to form a cone. Find its volume.
Answers
Answered by
200
R=15 cm
x=216
R=slant height of cone(l)
[tex] \frac{r}{l} = \frac{x}{360} \\ \frac{r}{15} = \frac{216}{360} \\ [/tex]
r=[tex] \frac{216}{360} *15 \\ \\ r=9[/tex]
height²=l²+r²=225+81=306
h=√306
volume=[tex] \frac{1}{3} \pi 9^{2} \sqrt{306} \\ 27* \pi *\sqrt{306}=1483.79[/tex]
x=216
R=slant height of cone(l)
[tex] \frac{r}{l} = \frac{x}{360} \\ \frac{r}{15} = \frac{216}{360} \\ [/tex]
r=[tex] \frac{216}{360} *15 \\ \\ r=9[/tex]
height²=l²+r²=225+81=306
h=√306
volume=[tex] \frac{1}{3} \pi 9^{2} \sqrt{306} \\ 27* \pi *\sqrt{306}=1483.79[/tex]
Answered by
4
R=15cm
x=216
R=slant height of cone
r - x
l 360
r - 216
15 260
216 x 15
360
R=9
height²=l²+r²=225+81=>306
H=√306
1 π9² √360
3
Volume:
27 x π x √306=1483.79
Similar questions