Math, asked by nikhilpruthvi, 1 year ago

From a circle of radius 15 cm., a sector with angle 216 degrees is cut out and its bounding radii are bent so as to form a cone. Find its volume.

Answers

Answered by Revolution
200
R=15 cm
x=216
R=slant height of cone(l)
[tex] \frac{r}{l} = \frac{x}{360} \\ \frac{r}{15} = \frac{216}{360} \\ [/tex]
r=[tex] \frac{216}{360} *15 \\ \\ r=9[/tex]
height²=l²+r²=225+81=306
h=√306
volume=[tex] \frac{1}{3} \pi 9^{2} \sqrt{306} \\ 27* \pi *\sqrt{306}=1483.79[/tex]
Answered by btsarmyforever90
4

R=15cm

x=216

R=slant height of cone

r - x

l 360

r - 216

15 260

216 x 15

360

R=9

height²=l²+r²=225+81=>306

H=√306

1 π9² √360

3

Volume:

27 x π x 306=1483.79

Similar questions