Math, asked by lovelylucky0511, 3 months ago

• From a circular card sheet of radius 14 cm, two circles of radius 3.5 cm and a
rectangle of length 3 cm and breadth 1cm are removed. (as shown in the adjoining
figure). Find the area of the remaining sheet. (Take T = 22/7)​

Attachments:

Answers

Answered by MrHyper
104

\huge\sf\green{answer:}

\sf{ }

\bf{{\underline{Area~of~the~sheet}}:}

 \sf Area \: of \: the \: larger \: circle - (Area \: of \: 2 \: small \: circles + Area \: of \: the \: rectangle)

\bf{{\underline{Area~of~the~larger~circle}}:}

 \sf Area \: of \: a \: circle :  \:  \pi r ^{2}   \:  \:  \:  \:  \:  \:  \:  \: \\  \bf{ \underline{Here } : }   \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: \\ \sf radius, \:  \: r = 14cm \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \\  \sf \implies  \frac{22}{7}  \times (14) ^{2} \:  \:  \:  \:  \:  \:  \:  \:  \:  \:   \\  \sf \implies  \frac{22}{ \cancel{7} \:  \: ^{1} }  \times { \cancel{14}} \:  \: ^{2}  \times 14 \\  \sf \implies 22 \times 2 \times 14  \:  \:  \:  \:  \:  \:  \:  \:  \: \\  \sf \implies  \green{ \underline{ \boxed{ \bf 616 {cm}^{2} }}} \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:

\bf{{\underline{Area~of~two~small~circles}}:}

 \sf Area \: of \: a \: circle :  \:  \pi r ^{2}   \:  \:  \:  \:  \:  \:  \:  \: \\  \bf{ \underline{Here } : }   \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: \\ \sf radius \:  \: r = 3.5cm \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \\  \sf \implies  \frac{22}{7}  \times (3.5) ^{2} \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:   \\  \sf \implies  \frac{22}{ \cancel{7} \:  \: ^{1} }  \times { \cancel{3.5}} \:  \: ^{0.5}  \times 3.5 \\  \sf \implies 22 \times 0.5 \times 3.5  \:  \:  \:  \:  \:  \:  \:  \:  \: \\  \sf \implies  \green{ \underline{ \boxed{ \bf 38.5 {cm}^{2} }}} \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \\  \bf  \therefore  \underline{Area \: of \: 2 \: small \: circles} :  \\  \sf 2 \times  {38.5cm}^{2}  = \green{ \underline{ \boxed{ \bf 77 {cm}^{2} }}}

\bf{{\underline{Area~of~the~rectangle}}:}

 \sf Area \: of \: a \: rectangle :  \: l \times b \\  \bf \underline{Here} :   \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: \\  \sf l = 3cm \:  \:  \: b = 1cm  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: \\  \sf \implies 3 \times 1 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \\  \sf \implies \green{ \underline{ \boxed{ \bf 3 {cm}^{2} }}} \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:

\bf\therefore{{\underline{Total~area~of~the~sheet}}:}

 \sf Area \: of \: the \: larger \: circle - (Area \: of \: 2 \: small \: circles + Area \: of \: the \: rectangle) \\  \sf \implies 616 - (77 + 3)  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: \\  \sf \implies 616 - 80 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \\  \sf \implies \green{ \underline{ \boxed{ \bf 536 {cm}^{2} }}} \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:   \:  \:  \:


MrHyper: Thanks !   xD
Ꚃhαtαkshi: (*˘︶˘*).。.:*♡
Anonymous: Fabulous
MrHyper: Thanks ! ❤️
Anonymous: Amazing <3
MrHyper: Thanks sis ! ❤️
MrHyper: But your answer is better than mine !
Anonymous: since the comments are open for all don't comment too much instead of 3-4 comments add them all in one comment it helps to reduce notifications
MяƖиνιѕιвʟє: Osmm
MrHyper: Thanks !
Answered by Anonymous
36

━━━━━━━━━━━━━━━━━━━━

\sf\underbrace{Appropriate\: Question:}

From a circular card sheet of radius 14 cm, two circles of radius 3.5 cm and a rectangle of length 3 cm and breadth 1cm are removed. (as shown in the adjoining figure). Find the area of the remaining sheet. (Take π = \sf\dfrac{22}{7})

\bf{\underline{\underline{\orange{\red{Given:}}}}}

  • Radius of the circular card sheet = 14 cm
  • Radius of the two small circle = 3.5 cm
  • Length of the rectangle = 3 cm
  • Breadth of the rectangle = 1 cm

\bf{\underline{\underline{\pink{\purple{To\:Find:}}}}}

  • The area of remaining sheet.

\bf{\underline{\underline{\orange{\green{Solution:}}}}}

\bf\underline{Remaining\:Area\:=\: Area\:of\: larger\: Circle}

  • {\implies} \sf{ – \:2\:×\:Area\:of\: smaller\: Circle}

  • {\implies} \sf{ – \:Area\:of\: Rectangle}

\bf\underline{ Area\:of\: larger\: Circle}

\sf{Radius\:of\: larger\: Circle\:=\:R\:=\:14 cm}

\sf{Area\:of\: larger\: Circle\:=\:πr²}

  • {\implies} = \sf\dfrac{22}{7}\sf{×\:(14)²}

\\

  • {\implies} = \sf\dfrac{22}{7}\sf{×\:14\:×\:14}

\\

  • {\implies} = \sf\dfrac{22}{7}\sf{×\:2\:×\:14}

\\

  • {\implies} \sf{=\: 44\:×\:14}

\\

  • {\implies} = \sf{616\:Cm²}

\\

\bf\underline{ Area\:of\: Smaller\: Circle}

\sf{Radius\:of\: larger\: Circle\:=\:R\:=\:3.5 cm}

\sf{Area\:of\: Smaller\: Circle\:=\:πr²}

\\

  • {\implies} = \sf\dfrac{22}{7}\sf{×\:(3.5)²}

\\

  • {\implies} = \sf\dfrac{22}{7} \sf\bigg(\dfrac{35}{10} \sf\bigg)²

\\

  • {\implies} = \sf\dfrac{22}{1} \sf\bigg(\dfrac{7}{2} \sf\bigg)²

\\

  • {\implies} \sf\dfrac{22}{7} × \sf\dfrac{7}{2} × \sf\dfrac{7}{2}

\\

  • {\implies} \sf\dfrac{11}{7} × \sf\dfrac{7}{1} × \sf\dfrac{7}{2}

\\

  • {\implies} \sf\dfrac{22}{7} 1 × 1 \sf\dfrac{7}{2} × \sf\dfrac{77}{2} \sf{ = \: 38.5\:cm²}

\\

\bf\underline{ Area\:of\: Rectangle:}

  • \sf{Length\:of\: Rectangle\:=\:l\:=\:3cm}
  • \sf{Breadth\:of\: Rectangle\:=\:l\:×\:b}
  • \sf{Area\:of\: Rectangle\:=\:l\:×\:b}
  • \sf{ =\:3\:×\:1}
  • \sf{ = \:3\:cm²}

\bf\underline{ Therefore:}

∴ Remaining Area = Area of larger Circle

– 2 × Area of Smaller Circle

– Area of Rectangle

  • {\implies}\sf{=\:616\:–\:2\:×}\sf\bigg(\dfrac{77}{2} \sf\bigg) – 3

\\

  • {\implies} \sf{ =\:616\:–\:77\:–\:3}

\\

  • {\implies} \sf{=\:616\:–\:80}

\\

{\implies} \sf{=\:536\:=\:cm²}

\\

\bf{\underline{\underline{\red{\purple{∴\: Required\:Area\:is\:536\:Cm²}}}}}

━━━━━━━━━━━━━━━━━━━━

Attachments:

Anonymous: Perfect ❤️
BrainlyMessi10: Amazing:D splendid answer:)
Anonymous: Nice
Anonymous: Thank Uh All (◍•ᴗ•◍)
ItsUDIT: That Great.
Anonymous: Merçi :)
MяƖиνιѕιвʟє: Osmm
Anonymous: Thankies! <3
Anonymous: Use cm^2 instead of cm² (in latex)
Similar questions