Math, asked by tanvi8456, 4 months ago

From a circular card sheet of radius 14 cm, two circles of radius 3.5 cm and a rectangle of length 3 cm and breadth 1 cm are removed (as shown in the adjoining figure) find the area of the remaining sheet.

pls explain the answer with proper steps and statements. ​

Attachments:

Answers

Answered by Anonymous
0

Step-by-step explanation:

Given:

Radius of the circular card sheet = 14 cm

Radius of two small circles = 3.5cm

Length of the rectangle inside it = 3cm

Breadth of the rectangle inside it = 1cm

To find:

Area of the remaining sheet.

First, we will find the area of the whole circle =

πr^2

 \frac{22}{7}  \times 14 \times 14 = area

(cancellation)

616 {cm}^{2}  = area \: of \: the \: whole \: circle

Second step-

Now we will find the area of 2 small circles.

3.14 \times 3.5 \times 3.5 \times 2 = area

76.93 \:  {cm}^{2}  = area

Third step-

Now we will find the area of the rectangle.

l \times b = area

3 \times 1 = area

3 {cm}^{2}

Total area= 76.93+3 = 79.93 cm^2

Area of the remaining sheet =

616- 79.93 = 536.07 cm^2

: Area of the remaiming sheet is 536.07 cm^2....

Answered by Anonymous
37

Answer:

The area of remaining sheet is 536 cm².

Step-by-step explanation:

\star\:{\underline{\boxed{\rm{\pink{Given : - }}}}}

  • ✧ Radius of circular sheet = 14cm
  • ✧ Radius of Small circle = 3.5cm
  • ✧ Length of Rectangle = 3cm
  • ✧ Breadth of Rectangle = 1cm

\begin{gathered}\end{gathered}

\star\:{\underline{\boxed{\rm{\purple{To \:  Find : - }}}}}

  • ✧ Area of Circular card
  • ✧ Area of 2 small circles
  • ✧ Area of Rectangle
  • ✧ Area of Remaining sheet

\begin{gathered}\end{gathered}

\star\:{\underline{\boxed{\rm{\blue{Solution : - }}}}}

Finding area of circular sheet by substituting the values in the formula :

  • ✧ Radius = 14 cm.
  • ✧ π = 22/7

{\implies{\sf{Area_{(Circular Sheet)}  =   \pi{R}^{2}}}}

{\implies{\sf{Area_{(Circular Sheet)}  =    \dfrac{22}{7} \times  {(14)}^{2}}}}

{\implies{\sf{Area_{(Circular Sheet)}  =    \dfrac{22}{7} \times  {(14 \times 14)}}}}

{\implies{\sf{Area_{(Circular Sheet)}  =    \dfrac{22}{\cancel{7}} \times  {( \cancel{14} \times 14)}}}}

{\implies{\sf{Area_{(Circular Sheet)}  =    {22}\times  {(2 \times 14)}}}}

{\implies{\sf{Area_{(Circular Sheet)}  =    {22}\times  {(28)}}}}

{\implies{\sf{Area_{(Circular Sheet)}  =    {22}\times 28}}}

{\implies{\sf{\underline{\underline{\red{Area_{(Circular Sheet)}  =  616 \:  {cm}^{2}}}}}}}

Hence, the area of circular sheet is 616 cm².

\rule{300}{1.5}

Finding the area of 2 small circles by substituting the values in the formula :

  • ✧ Radius = 3.5 cm
  • ✧ π = 22/7

\implies{\sf{Area_{(Small \:  Circles)} = 2 \times  \pi{r}^{2}}}

{\implies{\sf{Area_{(Small \:  Circles)} = 2  \times  \dfrac{22}{7} \times  {(3.5)}^{2}}}}

{\implies{\sf{Area_{(Small \:  Circles)} = 2\times  \dfrac{22}{7} \times  { \bigg( \dfrac{35}{10} \bigg)}^{2}}}}

{\implies{\sf{Area_{(Small \:  Circles)} = 2 \times  \dfrac{22}{7} \times  { \bigg( \cancel{\dfrac{35}{10}} \bigg)}^{2}}}}

{\implies{\sf{Area_{(Small \:  Circles)} = 2 \times  \dfrac{22}{7} \times  { \bigg( \dfrac{7}{2} \bigg)}^{2}}}}

{\implies{\sf{Area_{(Small \:  Circles)} = 2 \times  \dfrac{22}{7} \times  { \bigg( \dfrac{7}{2}  \times  \dfrac{7}{2} \bigg)}}}}

{\implies{\sf{Area_{(Small \:  Circles)} = 2 \times  \dfrac{\cancel{22}}{\cancel{7}} \times  { \bigg( \dfrac{\cancel{7}}{\cancel{2}} \times  \dfrac{7}{2} \bigg)}}}}

{\implies{\sf{Area_{(Small \:  Circles)} = 2 \times 11 \times \dfrac{7}{2}}}}

{\implies{\sf{Area_{(Small \:  Circles)} = 22\times \dfrac{7}{2}}}}

{\implies{\sf{Area_{(Small \:  Circles)} =  \cancel{22}\times \dfrac{7}{\cancel{2}}}}}

{\implies{\sf{Area_{(Small \:  Circles)} = 11 \times 7}}}

{\implies{\sf{\underline{\underline{\red{Area_{(Small \:  Circles)} =77 \:  {cm}^{2}}}}}}}

Area of 2 small circles is 77 cm².

\rule{300}{1.5}

Finding the area of rectangle by substituting the values in the formula :

  • ✧ Lenght of rectangle = 3 cm.
  • ✧ Breadth of Rectangle = 1 cm.

 {\implies\sf{Area_{(Rectangle)} = lb}}

{\implies\sf{Area_{(Rectangle)} = l \times b}}

{\implies\sf{Area_{(Rectangle)} = 3 \times 1}}

{\implies{\sf{\underline{\underline{\red{Area_{(Rectangle)} = 3 \:  {cm}^{2}}}}}}}

Hence, the area of rectangle 3 cm².

\rule{300}{1.5}

Now, finding the area of remaining sheet :

  • ✧ Area of circular sheet = 616 cm².
  • ✧ Area of 2 small circles = 77 cm²
  • ✧ Area of rectangle = 3 cm².

{\implies{\small{\sf{Area_{(Remaining Sheet)}= Area_{(Circular \:  Sheet)} -  Area_{(Small \: Circles)}  - Area_{(Rectangle)}}}}}

{\implies{\sf{Area_{(Remaining Sheet)}= 616 - 77 - 3}}}

{\implies{\sf{Area_{(Remaining Sheet)}= 616 - 77  + 3}}}

{\implies{\sf{Area_{(Remaining Sheet)}= 616 -80}}}

{\implies{\sf{\underline{\underline{\red{Area_{(Remaining Sheet)}= 536 \: {cm}^{2}}}}}}}

Hence, the area of sheet is 536 cm².

\begin{gathered}\end{gathered}

\star \: {\underline{\boxed{\rm{\green{Learn \: More: - }}}}}

Circle :

  • ✧ A circle is a round shaped figure that has no corners or edges. 
  • ✧ In geometry, a circle can be defined as a closed, two-dimensional curved shape.

Formula related to circle :

  • ✧ Area of circle = πr²
  • ✧ Diameter of circle = 2×r
  • ✧ Circumference of circle = 2πr

\underline{\rule{220pt}{3.5pt}}

Similar questions