Math, asked by amanhackher, 3 months ago

From a circular card sheet of radius 14cm , two circles of radius 3.5cm and a rectangle of length

3cm and breadth 1cm are removed find the area of the remaining sheet.​

Attachments:

Answers

Answered by Brâiñlynêha
160

\underline{\sf\ Solution:-}

Area of remaining sheet = Area of whole -(Area of 2 circles + Area of rectangle)

:\implies\sf\ Area\ of\ rectangle= Length\times breadth\\ \\ \\ :\implies\sf\ Area\ of\ circle = \pi r^2

Given :-

Radius of big circle (R) = 14cm

radius of small (r) = 3.5cm

Length of rectangle = 3cm

Breadth of rectangle= 1cm

  • We have to find the Area of remaining sheet

Now ,

:\implies\sf\ Remaining\ Area= \pi R^2-(2\pi r^2+\ell \times b)\\ \\ \\ :\implies\sf\ Area= \dfrac{22}{\cancel{7}}\times 14\times \cancel{14}-\Big(2\times \dfrac{22}{\cancel{7}}\times \cancel{3.5}\times 3.5+ 3\times 1\Big)\\ \\ \\ :\implies\sf\ Remaining\ Area= 22\times 14\times 7-\Big( 2\times 0.5\times 3.5\times22 +3\Big)\\ \\ \\ :\implies\sf\ Remaining\ Area=616 -\Big(77+3\Big)\\ \\ \\ :\implies\sf\ Remaining\ Area= 616-80\\ \\ \\ :\implies\underline{\boxed{\sf\ Remaining\ Area=536cm^2}}

Answered by Anonymous
78

Answer:

Given :-

  • A circular card sheet of radius 14 cm, two circles of radius is 3.5 cm and a rectangle of length is 3 cm and breadth 1 cm are removed.

To Find :-

  • What is the area of remaining sheet.

Formula Used :-

\sf\boxed{\bold{Area\: of\: Circle =\: {\pi}{r}^{2}}}

\sf\boxed{\bold{Area\: of\: Rectangle =\: Length \times Breadth}}

Solution :-

Given :

  • Radius of circular sheet (R) = 14 cm
  • Radius of smaller circle (r) = 3.5 cm
  • Length of rectangle = 3 cm
  • Breadth of rectangle = 1 cm

According to the question by using the formula we get,

Area of remaining sheet = Area of circular sheet - (Area of two smaller circle + Area of rectangle)

 \implies \sf Area\: of\: remaining\: sheet =\: {\pi}{R}^{2} - 2({\pi}{r}^{2} + length \times breadth)\\

 \implies \sf Area\: of\: remaining\: sheet =\: \dfrac{22}{7} \times {(14)}^{2} - 2 \times \dfrac{22}{7} \times {(3.5)}^{2} + 3 \times 1\\

 \implies \sf Area\: of\: remaining\: sheet =\: \dfrac{22}{\cancel{7}} \times 14 \times {\cancel{14}} - 2 \times \dfrac{22}{\cancel{7}} \times {\cancel{3.5}} \times 3.5 + 3\\

 \implies \sf Area\: of\: remaining\: sheet\: =\: 22 \times 14 \times 2 - (44 \times 0.5 \times 3.5 + 3)\\

 \implies \sf Area\: of\: remaining\: sheet\: =\: 616 - 80\\

 \implies \sf\bold{\red{Area\: of\: remaining\: sheet =\: 536\: {cm}^{2}}}\\

\therefore The area of remaining sheet is 536 cm² .

Similar questions