Math, asked by Mohithudda222, 10 months ago

From a circular card-sheet of radius 5 cm, a circular sheet of radius of 4 cm is removed. Find the area of the remaining sheet ( π = 3.14).

Answers

Answered by shenviyash
5

Step-by-step explanation:

for big circle radius =R=5cm

area of the big circle=πr^2=πR^2

for small circle which will be removed radius=r=4cm

area of small circle=πr^2

hence, the area of remaining sheet when small circle will be removed from big one=area of big circle - area of small circle=πR^2-πr^2=π(R^2-r^2)=3.14(5^2-4^2)=3.14(25-16)=3.14(9)=3.14×9=28.26sq.cm

hence the area of remaining sheet is 28.26sq.cm

Answered by Anonymous
0

\large{\bf{\red{\underline{\underline{AnsWer}}}}}

Area of outer circle =\pi  {r}^{2}  \\   =  \frac{22}{7}   \times 14 \times 14 \\  = 22 \times 28 = 616 cm²</p><p>⠀⠀⠀⠀</p><p>\\  \\ area \: of \: inner \: circle \:  = 2 \times  \pi  {r}^{2}  \\  \:  =  \: 2 \times  \frac{22}{7}  \times 35 \times 35 \\  = 22 \times 3.5 \\  = 77 {cm}^{2}  \\  \\ </p><p>area \: of \: rectangle =  \: l \times b \\ area</p><p> \: of \: whole \: circle \:  -</p><p>  \: ( \: area </p><p>\: of \: the</p><p> \: both \: circles \:  </p><p>+  </p><p>\: area \: of</p><p> \: rectangle</p><p> \: ) \:  =  \: area </p><p>\:  of</p><p> \: remaing \: sheet. \\  = 616 \:  -  \: ( \: 77 + 3) \\</p><p>  = 616 - 80 = </p><p> {536cm}^{2} ....

Similar questions