Math, asked by joojokumar, 5 months ago

from a circular metal sheet of radius 9cm a circle of radius 4 cm is removed. find the area of the remaining sheet .take π3.14​

Answers

Answered by CɛƖɛxtríα
77

{\underline{\underline{\bf{Given:}}}}

  • There's a circular metal sheet of radius 9 cm.
  • A circular part of radius 4 cm is removed from it.
  • The value of \pi is 3.14

{\underline{\underline{\bf{Need\:to\:find:}}}}

  • The area of remaining metal sheet.

{\underline{\underline{\bf{Formulae\:to\:be\:used:}}}}

\underline{\boxed{\sf{{Area}_{(Circle)}=\pi{r}^{2}\:sq.units.}}}

\underline{\boxed{\sf{{Area}_{(Remaining\:sheet)}={Area}_{(Big\: circle)}-{Area}_{(Small\: circle)}\:sq.units.}}}

{\underline{\underline{\bf{Solution:}}}}

First, let's find the area of big circle i.e, the area of circular metal sheet.

\:\:\:\:\:\implies{\sf{\pi{r}^{2}\:sq.units.}}

\:\:\:\:\:\implies{\sf{3.14\times {9}^{2}\:{cm}^{2}}}

\:\:\:\:\:\implies{\sf{3.14\times 81\:{cm}^{2}}}

\:\:\:\:\:\implies\underline{\bf{254.34\:{cm}^{2}}}

The area of big circle is \sf{254.34\:{cm}^{2}}. So, now let's find the area of small circle i.e, the area of part which was cut out from the circular metal sheet.

\:\:\:\:\:\implies{\sf{\pi{r}^{2}\:sq.units.}}

\:\:\:\:\:\implies{\sf{3.14\times {4}^{2}\:{cm}^{2}}}

\:\:\:\:\:\implies{\sf{3.14\times 16\:{cm}^{2}}}

\:\:\:\:\:\implies\underline{\bf{50.24\:{cm}^{2}}}

Finally, the area of the remaining sheet:

\:\:\:\:\:\implies{\sf{Area\:of\:big\:circle-Area\:of\:small\: circle}}

\:\:\:\:\:\implies{\sf{254.34-50.24\:{cm}^{2}}}

\:\:\:\:\:\implies\underline{\sf{\red{204.1\:{cm}^{2}}}}

{\underline{\underline{\bf{Final\:answer:}}}}

  • The area of remaining metal sheet is 204.1 cm².

_______________________________________


Anonymous: Astounding! :claps:
CɛƖɛxtríα: Thnku ^^
joojokumar: thanks
joojokumar: your so beautiful
joojokumar: you are so beautiful
Similar questions