Math, asked by shabnambaano5, 5 months ago

From a circular sheet of diameter 14cm a rectangular portion of lenth 13cm and and breadth 5cm is cut out find the area of the remaining sheet

Answers

Answered by ruthlessrex
0

Answer:

89cm²

Step-by-step explanation:

Radius of circular sheet  = diameter/2 = 14/2 = 7cm

Area of circular sheet  = πr²

                                    => 22/7 × 7 × 7

                                    =>  154cm²

Area of rectangular portion = length × breadth

                                    => 13cm × 5cm

                                    => 65cm²

Area of remaining portion = Area of circular sheet - Area of rectangular portion

=> 154cm² - 65cm²

= 89cm²

∴ 89cm² of sheet remains.

Answered by Agamsain
0

Answer :-

  • Area of Remaining Part = 89 cm²

Given :-

  • Diameter of Circle = 14 cm
  • Length of Rectangle = 13 cm
  • Breadth of Rectangle = 5 cm

To Find :-

  • Area of Remaining Part = ?

Explanation :-

As above given. we have to find the Area of Remaining part (Blue Area). Hence, we will Find the area of both figures.

\pink { \boxed { \bigstar \: \bf Area \: of \: Circle = \pi r^2 \: \bigstar}}

\rm : \: \longrightarrow \pi \times r \times r

\rm : \: \longrightarrow (\dfrac{22}{7} \times 7 \times 7) \: cm^2

\rm : \: \longrightarrow (22 \times 7) \: cm^2

\bf : \: \longrightarrow 154 \: cm^2 \quad \star

\green { \boxed { \bigstar \: \text{ \bf Area of Rectangle = L $ \times $ B } \: \bigstar}}

\rm : \: \longrightarrow Length \times Breadth

\rm : \: \longrightarrow (13 \times 5) \: cm^2

\bf : \: \longrightarrow 65 \: cm^2 \quad \star

\blue { \boxed { \bigstar \: \text{ \bf Area of Remaining Part = Area of Circle - Area of Rect. } \: \bigstar}}

\rm : \: \longrightarrow 154 \: cm^2 - 65 \: cm^2

\rm : \: \longrightarrow (154 - 65) \: cm^2

\red { \underline { \boxed { \bf : \: \longrightarrow 89 \: cm^2 \quad \star }}}

Hence, the area of remaining part is 89 cm².

Attachments:
Similar questions