Math, asked by roastingbro516, 3 months ago

from a circular sheet of radius 8cm, a circular sheet of radius 6cm is removed find the area of remaining sheet​

Answers

Answered by BrainlyRish
8

Given : From a circular sheet of radius 8cm, a circular sheet of radius 6cm is removed .

Need To Find : The area of Remaining sheet.

⠀⠀⠀⠀⠀━━━━━━━━━━━━━━━━━━━⠀

❒ Finding Area of Remaining sheet :

\underline {\frak{ As,\:We\:Know\:that\:,}}\\

⠀⠀⠀⠀⠀ \implies {\underline {\sf{ Area _{(Circle)} = \pi \times r^{2} \:units .}}}\\

⠀⠀⠀⠀⠀Here r is the Radius of Circle and \pi=\dfrac{22}{7} .

Given that ,

  • From a circular sheet of radius 8cm, a circular sheet of radius 6cm is removed .

❍ Let's Consider R be the radius of bigger Circle orbwhole sheet and r be the radius of smaller Circle.

Then ,

⠀⠀⠀⠀⠀\boxed{\sf{Area \:of\:Remaining \:Sheet\:=Area \:of\:bigger \:Circle \:_{(Whole\:Sheet)} - Area\:of\:Smaller\:Circle _{(Removed\:Sheet)}\:}}\\

Or ,

⠀⠀⠀⠀⠀\boxed{\sf{Area \:of\:Remaining \:Sheet\:=\pi R^{2}  - \pi r^{2}\:}}\\

⠀⠀⠀⠀⠀\boxed{\sf{Area \:of\:Remaining \:Sheet\:=\pi( R^{2}  -  r^{2})\:}}\\

⠀⠀⠀⠀⠀⠀\underline {\frak{\star\:Now \: By \: Substituting \: the \: Given \: Values \::}}\\

⠀⠀⠀⠀⠀⠀\longmapsto { \tt{ Area\:of\:Remaining \:sheet\: =\pi ( 8 ^{2} -  6^{2}) }}\\

⠀⠀⠀⠀⠀⠀\longmapsto { \tt{ Area\:of\:Remaining \:sheet\: =\pi ( 64 - 36 ) }}\\

⠀⠀⠀⠀⠀⠀\longmapsto { \tt{ Area\:of\:Remaining \:sheet\: =\pi ( 28 ) }}\\

As , We know that ,

\star\pi \:= \dfrac{22}{7}

⠀⠀⠀⠀⠀⠀\longmapsto { \tt{ Area\:of\:Remaining \:sheet\: =\dfrac{22}{\cancel {7}}\times \cancel {28} }}\\

⠀⠀⠀⠀⠀⠀\longmapsto { \tt{ Area\:of\:Remaining \:sheet\: =\:22\times 4 }}\\

⠀⠀⠀⠀⠀\underline {\boxed{\pink{ \mathrm {  Area\:of\:Remaining \:Sheet\:= 88\: cm^{2}}}}}\:\bf{\bigstar}\\

Therefore,

⠀⠀⠀⠀⠀\therefore {\underline { \mathrm {   Area\:of\:Remaining \:Sheet\:is\: 88\: cm^{2} }}}\\

⠀⠀⠀⠀⠀━━━━━━━━━━━━━━━━━━━⠀

⠀⠀⠀⠀⠀

Similar questions