Math, asked by veenaaz20, 6 months ago

from a point a,level with the foot of a vertical pole and 25m from it ,the angle of elevation of the top of the pole is 48 degree .calculate
the ht of the pole
the angle of elevation from a of a point half way up the pole ​

Answers

Answered by Anonymous
14

\bf{\underline{\green{Given:-}}}

⚠ Distance between point A and foot of vertical pole = 25m

⚠ Angle of elevation of the top of the wall = 48°

\bf{\underline{\green{Find:-}}}

⚠ Height of the Pole

\bf{\underline{\green{Diagram:-}}}

\setlength{\unitlength}{1cm}\begin{picture}(6,5)\linethickness{.4mm}\put(1,1){\line(1,0){4.5}}\put(1,1){\line(0,1){3.5}}\qbezier(1,4.5)(1,4.5)(5.5,1)\put(1.02,1.02){\framebox(0.3,0.3)}\put(.9,4.6){\large\bf P}\put(.8,.5){\large\bf Q}\put(5.5,.5){\large\bf A}\qbezier(4.5,1)(4.3,1.25)(4.6,1.7) \qbezier(5.5,1)(1,3)(1,3)\put(3.8,1.2){$\large\bf 48^{\circ}$} \put(.5,2.8){\large\bf  R} \put(3,.6){\large\bf 25m} \end{picture}

\bf{\underline{\green{Solution:-}}}

In ∆PAQ, right angled at Q

 \sf \Longrightarrow tan \: 48^{ \circ}  = \dfrac{P}{B} \\  \\

 \sf \Longrightarrow tan \: 48^{ \circ}  = \dfrac{PQ}{AQ} \\  \\

where,

  • AQ = 25m
  • tan 48° = 1.11061

So,

 \sf \dashrightarrow tan \: 48^{ \circ}  = \dfrac{PQ}{AQ} \\  \\

 \sf \dashrightarrow 1.11061 = \dfrac{PQ}{25} \\  \\

 \bf \bigstar Cross - Multiplication \bigstar

 \sf \dashrightarrow 1.11061 \times 25 = PQ\\  \\

 \sf \dashrightarrow 27.765m(approx.) = PQ\\  \\

 \sf \dashrightarrow 27.8m= PQ\\  \\

 \sf \dashrightarrow PQ = 27.8m\\  \\

 \sf \therefore PQ = 27.8m\\  \\

Thus, the height of the pole is 27.8m

Similar questions