Math, asked by Sanjayspartan, 10 months ago

From a point on a bridge across a river, the
angles of depression of the banks on opposite
sides at the river are 30° and 45°, respectively
If the bridge is at a height at 3 m from the
banks, find the width at the river.​

Answers

Answered by prathikshakumar133
5

Step-by-step explanation:

width of river is 3(1+√3) m if we want we can use √3 value and write then the anwer will be 8.19 m

Attachments:
Answered by Anonymous
1

 \huge \boxed{ \fcolorbox{cyan}{pink}{Answer : }}

 \sf{A  \: and  \: B  \: represent  \: points \:  on  \: the \:  banks}

 \sf{on \: opposite \: sides}

so

 \rm{AB \:  is \:  width}

Now

 \sf{Height  \: of  \: brigde \: DP = 3m}

 \sf{AB = AD + DB}

 \sf{In \:  right \:  triangle  \: ABD,  \: Angle A = 30°}

Then

 \sf{ \tan(30) =  \frac{pd}{ad}}

 \rm{ \frac{1}{ \sqrt{3} } =  \frac{3}{ad}}

 \bf{ \huge{ \boxed{ \red{ \tt{AD= 3 \sqrt{3} \: }}}}}

Then

 \sf{In \:  triangle  \: PBD, Angle \:  B = 45°}

 \sf{So \:  BD = PD = 3m}

now

 \rm{AB = DB + AD}

 \sf{3 + 3 \sqrt{3}}

 \sf{3( \sqrt{3 + 1)m}}

 \rm{The \:  width  \: of \:  river \:  is}

 \bf{ \huge{ \boxed{ \green{ \tt{3( \sqrt{3 + 1)m \: }}}}}}

Similar questions