Math, asked by jaisingadi7335, 9 months ago

From a point on the ground, Emma measures the angle of elevation of an 80 m tower to be 27°. Find how far Emma is from the base of the tower, correct to the nearest metre.

Answers

Answered by deepak1463
5

Step-by-step explanation:

GIVEN:−

A body has displacement (2, 4, -6) to (6, -4, 4) under a constant force \sf{2\hat{i}+3\hat{j}-\hat{k}}2i^+3j^−k^ .

\bigstar\ \sf{\overrightarrow{F}=2\hat{i}+3\hat{j}-\hat{k}}★ F=2i^+3j^−k^

\large \underline{\underline{\sf{\color{orange}{TO\ FIND:-}}}}TO FIND:−

The work done by the body.

\large \underline{\underline{\sf{\color{orange}{SOLUTION:-}}}}SOLUTION:−

According to the question,

\bullet\ \sf{\overrightarrow{r_1}=2\hat{i}+4\hat{j}-6\hat{k}}∙ r1=2i^+4j^−6k^

\bullet\ \sf{\overrightarrow{r_2}=6\hat{i}-4\hat{j}+4\hat{k}}∙ r2=6i^−4j^+4k^

\sf{\to \Delta \overrightarrow{r}=\overrightarrow{D}=\overrightarrow {r_2}-\overrightarrow {r_1}}→Δr=D=r2−r1

Solving further :-

\longrightarrow \sf{\Delta \overrightarrow{r}= 6\hat{i}-4\hat{j}+4\hat{k}-(2\hat{i}+4\hat{j}-6\hat{k}) }⟶Δr=6i^−4j^+4k^−(2i^+4j^−6k^)

\longrightarrow \sf{\Delta \overrightarrow{r}= 6\hat{i}-4\hat{j}+4\hat{k}-2\hat{i}-4\hat{j}+6\hat{k}}⟶Δr=6i^−4j^+4k^−2i^−4j^+6k^

\longrightarrow \sf{\Delta \overrightarrow{r}= 4\hat{i}-8\hat{j}+10\hat{k}}⟶Δr=4i^−8j^+10k^

__________________

We are given with :

\dag\ \sf{\overrightarrow{F}=2\hat{i}+3\hat{j}-\hat{k}}† F=2i^+3j^−k^

We know that,

\sf{Work\ done,\ W=\overrightarrow{F}.\overrightarrow{D}}Work done, W=F.D

Solving further :-

\sf{\longrightarrow W= (2\hat{i}+3\hat{j}-\hat{k}).(4\hat{i}-8\hat{j}+10\hat{k})}⟶W=(2i^+3j^−k^).(4i^−8j^+10k^)

\sf{\longrightarrow W= 8-24-10}⟶W=8−24−10

\boxed{\bf{\longrightarrow W= -26\ J}}⟶W=−26 J

OR

\boxed{\bf{\longrightarrow W= -26\ N.m}}⟶W=−26 N.m

Therefore, the work done by the body is -26 Joules or -26 Newton·meter.

Similar questions