Math, asked by XxsoumyaxX, 3 days ago

From a point on the ground, the angle of elevation of the top of a tower is observed to be 60°. From a point 40 m vertically above the first point of observation, the angle of elevation of the top of the tower is 30°. Find the height of the tower and its horizontal distance from the point of observation.

Don't give irrelevant answers.
And no meet links.

Your effort will be appreciated.​

Answers

Answered by arshpreetsingh2975
9

To find → Height of tower (AB)

Let AB =h m

In △ABC, by Trigonometry

tan60∘=BCAB

3=BCh⇒BC=(3h)m

Since BCDE is a ||gm, so BC=DE and CD = BE

∴DE=(3h)m;BE=40m

Now in △ADE

tan30∘=DEAE

31=3hh−40

h=3h−120

2h=120m

h=60m

Height of tower = 60 m.

To find → Horizontal Distance from point of observation (BC)

BC=3h=360=203m

BC=203m=34.60m

Step-by-step explanation:

I hope this will help you

Answered by mathdude500
35

\large\underline{\sf{Solution-}}

Let assume that CD be the height of the tower.

Now, From a point A, on the ground, the angle of elevation of the top of a tower is observed to be 60°.

Now, From a point B, 40 m vertically above the first point of observation, the angle of elevation of the top of the tower is 30°.

Let assume that

Height of tower, CD = h m

AC = BE = x m.

Now, In right-angled triangle ACD

\rm \: tan60 \degree \:  =  \: \dfrac{CD}{AC}  \\

\rm \:  \sqrt{3}  \:  =  \: \dfrac{h}{x}  \\

\rm\implies \:h =  \sqrt{3}x -  -  - (1) \\

Now, In right-angled triangle BED

\rm \: tan30 \degree \:  =  \: \dfrac{ED}{BE}  \\

\rm \: \dfrac{1}{ \sqrt{3} }  = \dfrac{h - 40}{x}  \\

\rm \: \dfrac{1}{ \sqrt{3} }  = \dfrac{ \sqrt{3}x  - 40}{x}  \\

\rm \: 3x - 40 \sqrt{3} = x \\

\rm \: 3x - x= 40 \sqrt{3} \\

\rm \: 2x= 40 \sqrt{3} \\

\rm\implies \: x= 20 \sqrt{3} \\

On substituting the value of x in equation (1), we get

\rm \: h = 20 \sqrt{3} \times  \sqrt{3}  \\

\rm\implies \:h \:  =  \: 60 \:  \\

Hence,

The height of the tower = 60 m

and

Its horizontal distance from the point of observation is 20√3 m or 20 × 1.73 = 34.6 m

\rule{190pt}{2pt}

\begin{gathered}\begin{gathered}\begin{gathered}\begin{gathered}\sf Trigonometry\: Table \\ \begin{gathered}\begin{gathered}\begin{gathered}\begin{gathered}\boxed{\boxed{\begin{array}{ |c |c|c|c|c|c|} \bf\angle A & \bf{0}^{ \circ} & \bf{30}^{ \circ} & \bf{45}^{ \circ} & \bf{60}^{ \circ} & \bf{90}^{ \circ} \\ \\ \rm sin A & 0 & \dfrac{1}{2}& \dfrac{1}{ \sqrt{2} } & \dfrac{ \sqrt{3}}{2} &1 \\ \\ \rm cos \: A & 1 & \dfrac{ \sqrt{3} }{2}& \dfrac{1}{ \sqrt{2} } & \dfrac{1}{2} &0 \\ \\ \rm tan A & 0 & \dfrac{1}{ \sqrt{3} }&1 & \sqrt{3} & \rm \infty \\ \\ \rm cosec A & \rm \infty & 2& \sqrt{2} & \dfrac{2}{ \sqrt{3} } &1 \\ \\ \rm sec A & 1 & \dfrac{2}{ \sqrt{3} }& \sqrt{2} & 2 & \rm \infty \\ \\ \rm cot A & \rm \infty & \sqrt{3} & 1 & \dfrac{1}{ \sqrt{3} } & 0\end{array}}}\end{gathered}\end{gathered}\end{gathered} \end{gathered}\end{gathered}\end{gathered}\end{gathered}\end{gathered}

Attachments:
Similar questions